Alessandro Brin, Sebastian E. Lauro, Barbara Cosciotti, Gabriele Turchetti, Elisabetta Mattei, Elena Pettinelli
{"title":"支持行星雷达测深仪探测的岩石和冰壳模拟物的电磁测量和建模","authors":"Alessandro Brin, Sebastian E. Lauro, Barbara Cosciotti, Gabriele Turchetti, Elisabetta Mattei, Elena Pettinelli","doi":"10.1029/2025JE008942","DOIUrl":null,"url":null,"abstract":"<p>Reliable interpretation of orbiting radar sounder observations requires a deep understanding of the electromagnetic behavior of planetary material simulants. Experimental data regarding simulants properties are rather limited, especially for icy materials, and such a lack is often overcome by using mixing models. In this work we performed dielectric and magnetic measurements on rocky granular materials and rocky/icy mixtures to characterize the regolith covering the rocky internal structure of an asteroid and the icy mixtures composing the shallow subsurface of Ganymede at planetary temperatures, and in the frequency range of interest for current and future radar sounder missions (1–100 MHz). We also compared the experimental results with those retrieved using several common mixing formulas to assess the reliability of the electromagnetic models in reproducing the properties of composite materials. Finally, we estimated the attenuation of the radar signal as a function of temperature and rocky grain volume fractions in different subsurface scenarios. Our results suggest that caution should be used in applying mixing formulas to simulate the electromagnetic properties of planetary materials, especially if a non-negligible amount of clay is present in the rocky fraction of the mixtures. Moreover, such results highlight the effect of temperature on the dielectric properties of the icy mixtures which might produce an unexpected behavior in the radar signal attenuation.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Measurements and Modeling of Rocky and Icy Crust Simulants to Support Planetary Radar Sounder Exploration\",\"authors\":\"Alessandro Brin, Sebastian E. Lauro, Barbara Cosciotti, Gabriele Turchetti, Elisabetta Mattei, Elena Pettinelli\",\"doi\":\"10.1029/2025JE008942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliable interpretation of orbiting radar sounder observations requires a deep understanding of the electromagnetic behavior of planetary material simulants. Experimental data regarding simulants properties are rather limited, especially for icy materials, and such a lack is often overcome by using mixing models. In this work we performed dielectric and magnetic measurements on rocky granular materials and rocky/icy mixtures to characterize the regolith covering the rocky internal structure of an asteroid and the icy mixtures composing the shallow subsurface of Ganymede at planetary temperatures, and in the frequency range of interest for current and future radar sounder missions (1–100 MHz). We also compared the experimental results with those retrieved using several common mixing formulas to assess the reliability of the electromagnetic models in reproducing the properties of composite materials. Finally, we estimated the attenuation of the radar signal as a function of temperature and rocky grain volume fractions in different subsurface scenarios. Our results suggest that caution should be used in applying mixing formulas to simulate the electromagnetic properties of planetary materials, especially if a non-negligible amount of clay is present in the rocky fraction of the mixtures. Moreover, such results highlight the effect of temperature on the dielectric properties of the icy mixtures which might produce an unexpected behavior in the radar signal attenuation.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JE008942\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JE008942","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Electromagnetic Measurements and Modeling of Rocky and Icy Crust Simulants to Support Planetary Radar Sounder Exploration
Reliable interpretation of orbiting radar sounder observations requires a deep understanding of the electromagnetic behavior of planetary material simulants. Experimental data regarding simulants properties are rather limited, especially for icy materials, and such a lack is often overcome by using mixing models. In this work we performed dielectric and magnetic measurements on rocky granular materials and rocky/icy mixtures to characterize the regolith covering the rocky internal structure of an asteroid and the icy mixtures composing the shallow subsurface of Ganymede at planetary temperatures, and in the frequency range of interest for current and future radar sounder missions (1–100 MHz). We also compared the experimental results with those retrieved using several common mixing formulas to assess the reliability of the electromagnetic models in reproducing the properties of composite materials. Finally, we estimated the attenuation of the radar signal as a function of temperature and rocky grain volume fractions in different subsurface scenarios. Our results suggest that caution should be used in applying mixing formulas to simulate the electromagnetic properties of planetary materials, especially if a non-negligible amount of clay is present in the rocky fraction of the mixtures. Moreover, such results highlight the effect of temperature on the dielectric properties of the icy mixtures which might produce an unexpected behavior in the radar signal attenuation.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.