共晶溶剂组分的量子化学筛选,以深入了解二氧化碳络合机制†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Stephen P. Vicchio, Osasumwen J. Ikponmwosa and Rachel B. Getman
{"title":"共晶溶剂组分的量子化学筛选,以深入了解二氧化碳络合机制†","authors":"Stephen P. Vicchio, Osasumwen J. Ikponmwosa and Rachel B. Getman","doi":"10.1039/D5ME00034C","DOIUrl":null,"url":null,"abstract":"<p >Developing new negative emission technologies (NETs) to capture atmospheric CO<small><sub>2</sub></small> is necessary to limit global temperature rise below 1.5 °C by 2050. The technologies, such as direct air capture (DAC), rely on sorption materials to harvest trace amounts of CO<small><sub>2</sub></small> from ambient air. Deep eutectic solvents (DESs) and eutectic solvents (ESs), a subset of ionic liquids (ILs), are all promising new CO<small><sub>2</sub></small> sorption materials for DAC. However, the experimental design space for different DESs/ESs/ILs is vast, with the exact CO<small><sub>2</sub></small> complexation pathways difficult to elucidate; this creates significant limitations in rationally designing new materials with targeted CO<small><sub>2</sub></small> sorption energetics. Herein, the CO<small><sub>2</sub></small> complexation pathways for a structural library of different DES/ES components are computed using quantum chemical calculations (<em>i.e.</em>, density functional theory). For the entire structure library, we report the energies of elementary CO<small><sub>2</sub></small> binding and proton transfer reactions as these reactions are fundamental in DAC within DESs and ESs. These elementary reactions are combined to generate CO<small><sub>2</sub></small> complexation pathways and calculate their free energies. The different elementary steps and reaction pathways demonstrate the range of CO<small><sub>2</sub></small> complexation free energies and the significance between CO<small><sub>2</sub></small> binding and proton transfer reactions. We also report the CO<small><sub>2</sub></small> complexation free energies with different functional groups around the CO<small><sub>2</sub></small> sorption site, supporting the concept of functionalization for tuning CO<small><sub>2</sub></small> complexation thermodynamics. Additionally, our findings suggest potential descriptors, such as proton affinity or p<em>K</em><small><sub>a</sub></small>, could be useful when identifying candidate species for ESs and predicting/rationalizing product distributions. Our work has implications for experimental synthesis, characterization, and performance evaluation of new DAC sorption materials.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 6","pages":" 447-458"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/me/d5me00034c?page=search","citationCount":"0","resultStr":"{\"title\":\"Quantum chemical screening of eutectic solvent components for insights into CO2 complexation mechanisms†\",\"authors\":\"Stephen P. Vicchio, Osasumwen J. Ikponmwosa and Rachel B. Getman\",\"doi\":\"10.1039/D5ME00034C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing new negative emission technologies (NETs) to capture atmospheric CO<small><sub>2</sub></small> is necessary to limit global temperature rise below 1.5 °C by 2050. The technologies, such as direct air capture (DAC), rely on sorption materials to harvest trace amounts of CO<small><sub>2</sub></small> from ambient air. Deep eutectic solvents (DESs) and eutectic solvents (ESs), a subset of ionic liquids (ILs), are all promising new CO<small><sub>2</sub></small> sorption materials for DAC. However, the experimental design space for different DESs/ESs/ILs is vast, with the exact CO<small><sub>2</sub></small> complexation pathways difficult to elucidate; this creates significant limitations in rationally designing new materials with targeted CO<small><sub>2</sub></small> sorption energetics. Herein, the CO<small><sub>2</sub></small> complexation pathways for a structural library of different DES/ES components are computed using quantum chemical calculations (<em>i.e.</em>, density functional theory). For the entire structure library, we report the energies of elementary CO<small><sub>2</sub></small> binding and proton transfer reactions as these reactions are fundamental in DAC within DESs and ESs. These elementary reactions are combined to generate CO<small><sub>2</sub></small> complexation pathways and calculate their free energies. The different elementary steps and reaction pathways demonstrate the range of CO<small><sub>2</sub></small> complexation free energies and the significance between CO<small><sub>2</sub></small> binding and proton transfer reactions. We also report the CO<small><sub>2</sub></small> complexation free energies with different functional groups around the CO<small><sub>2</sub></small> sorption site, supporting the concept of functionalization for tuning CO<small><sub>2</sub></small> complexation thermodynamics. Additionally, our findings suggest potential descriptors, such as proton affinity or p<em>K</em><small><sub>a</sub></small>, could be useful when identifying candidate species for ESs and predicting/rationalizing product distributions. Our work has implications for experimental synthesis, characterization, and performance evaluation of new DAC sorption materials.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 6\",\"pages\":\" 447-458\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/me/d5me00034c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00034c\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00034c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了到2050年将全球气温上升限制在1.5°C以下,有必要开发新的负排放技术来捕获大气中的二氧化碳。直接空气捕获(DAC)等技术依靠吸附材料从环境空气中收集微量二氧化碳。深共晶溶剂(DESs)和共晶溶剂(ESs)是离子液体(ILs)的一个分支,都是很有前途的新型CO2吸附材料。然而,不同的DESs/ESs/ILs的实验设计空间很大,确切的CO2络合途径难以阐明;这对合理设计具有目标二氧化碳吸附能量学的新材料造成了重大限制。本文利用量子化学计算(即密度泛函理论)计算了不同DES/ES组分结构库的CO2络合途径。对于整个结构库,我们报告了基本的CO2结合反应和质子转移反应的能量,因为这些反应是DESs和ESs中DAC的基础。这些基本反应结合起来产生二氧化碳络合反应途径,并计算它们的自由能。不同的基本步骤和反应途径说明了CO2络合自由能的范围以及CO2结合反应和质子转移反应之间的意义。我们还报道了CO2吸附位点周围不同官能团的CO2络合自由能,支持官能团调节CO2络合热力学的概念。此外,我们的研究结果表明,潜在的描述符,如质子亲和或pKa,在确定ESs候选物种和预测/合理化产品分布时可能有用。我们的工作对新型DAC吸附材料的实验合成、表征和性能评价具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum chemical screening of eutectic solvent components for insights into CO2 complexation mechanisms†

Developing new negative emission technologies (NETs) to capture atmospheric CO2 is necessary to limit global temperature rise below 1.5 °C by 2050. The technologies, such as direct air capture (DAC), rely on sorption materials to harvest trace amounts of CO2 from ambient air. Deep eutectic solvents (DESs) and eutectic solvents (ESs), a subset of ionic liquids (ILs), are all promising new CO2 sorption materials for DAC. However, the experimental design space for different DESs/ESs/ILs is vast, with the exact CO2 complexation pathways difficult to elucidate; this creates significant limitations in rationally designing new materials with targeted CO2 sorption energetics. Herein, the CO2 complexation pathways for a structural library of different DES/ES components are computed using quantum chemical calculations (i.e., density functional theory). For the entire structure library, we report the energies of elementary CO2 binding and proton transfer reactions as these reactions are fundamental in DAC within DESs and ESs. These elementary reactions are combined to generate CO2 complexation pathways and calculate their free energies. The different elementary steps and reaction pathways demonstrate the range of CO2 complexation free energies and the significance between CO2 binding and proton transfer reactions. We also report the CO2 complexation free energies with different functional groups around the CO2 sorption site, supporting the concept of functionalization for tuning CO2 complexation thermodynamics. Additionally, our findings suggest potential descriptors, such as proton affinity or pKa, could be useful when identifying candidate species for ESs and predicting/rationalizing product distributions. Our work has implications for experimental synthesis, characterization, and performance evaluation of new DAC sorption materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信