基于非线性时空建模的电力系统数据可用性和完整性攻击

IF 3.2 Q3 ENERGY & FUELS
Hongfei Sun;Dongliang Duan;Hongming Zhang;Seong Lok Choi;Jiazi Zhang;Xiaofei Wang;Haonan Wang;Jie Luo;Liuqing Yang
{"title":"基于非线性时空建模的电力系统数据可用性和完整性攻击","authors":"Hongfei Sun;Dongliang Duan;Hongming Zhang;Seong Lok Choi;Jiazi Zhang;Xiaofei Wang;Haonan Wang;Jie Luo;Liuqing Yang","doi":"10.1109/OAJPE.2025.3567209","DOIUrl":null,"url":null,"abstract":"Cybersecurity has become critical for modern power systems as they increasingly rely on digital communication and computational frameworks. Among cyber-attacks, Data Availability and Integrity Attacks (DAIA)—comprising availability attacks such as Denial-of-Service (DoS) and integrity attacks like replay attack—pose severe risks by degrading the reliability and usability of measurement data essential for operational decision-making. This paper presents a data-driven model using the Volterra series to address DAIA in complex power systems. The proposed model effectively captures spatial-temporal relationships, integrating multiple data sources with varying sampling rates while addressing nonlinear dynamics introduced by renewable energy integration. We develop a scalable anomaly detection framework that identifies such attack patterns, including replay attacks leveraging training data. Extensive simulations on the 240-bus WECC system demonstrate the model’s superior performance, achieving robust detection and accurate data recovery with practical computational requirements. Our work provides actionable insights and configuration guidelines for ensuring power system resilience against evolving cyber threats.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"366-377"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10988696","citationCount":"0","resultStr":"{\"title\":\"Data Availability and Integrity Attacks for Power Systems via Nonlinear Spatial-Temporal Modeling\",\"authors\":\"Hongfei Sun;Dongliang Duan;Hongming Zhang;Seong Lok Choi;Jiazi Zhang;Xiaofei Wang;Haonan Wang;Jie Luo;Liuqing Yang\",\"doi\":\"10.1109/OAJPE.2025.3567209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cybersecurity has become critical for modern power systems as they increasingly rely on digital communication and computational frameworks. Among cyber-attacks, Data Availability and Integrity Attacks (DAIA)—comprising availability attacks such as Denial-of-Service (DoS) and integrity attacks like replay attack—pose severe risks by degrading the reliability and usability of measurement data essential for operational decision-making. This paper presents a data-driven model using the Volterra series to address DAIA in complex power systems. The proposed model effectively captures spatial-temporal relationships, integrating multiple data sources with varying sampling rates while addressing nonlinear dynamics introduced by renewable energy integration. We develop a scalable anomaly detection framework that identifies such attack patterns, including replay attacks leveraging training data. Extensive simulations on the 240-bus WECC system demonstrate the model’s superior performance, achieving robust detection and accurate data recovery with practical computational requirements. Our work provides actionable insights and configuration guidelines for ensuring power system resilience against evolving cyber threats.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"366-377\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10988696\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10988696/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10988696/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着现代电力系统越来越依赖于数字通信和计算框架,网络安全已成为现代电力系统的关键。在网络攻击中,数据可用性和完整性攻击(DAIA)——包括可用性攻击,如拒绝服务攻击(DoS)和完整性攻击,如重放攻击——通过降低对运营决策至关重要的测量数据的可靠性和可用性,构成严重的风险。本文提出了一个使用Volterra系列的数据驱动模型来解决复杂电力系统中的DAIA问题。该模型有效地捕获了时空关系,整合了不同采样率的多个数据源,同时解决了可再生能源集成带来的非线性动力学问题。我们开发了一个可扩展的异常检测框架,用于识别此类攻击模式,包括利用训练数据的重放攻击。在240总线WECC系统上的大量仿真证明了该模型的优越性能,实现了鲁棒检测和精确的数据恢复,满足了实际的计算要求。我们的工作为确保电力系统抵御不断变化的网络威胁提供了可操作的见解和配置指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Availability and Integrity Attacks for Power Systems via Nonlinear Spatial-Temporal Modeling
Cybersecurity has become critical for modern power systems as they increasingly rely on digital communication and computational frameworks. Among cyber-attacks, Data Availability and Integrity Attacks (DAIA)—comprising availability attacks such as Denial-of-Service (DoS) and integrity attacks like replay attack—pose severe risks by degrading the reliability and usability of measurement data essential for operational decision-making. This paper presents a data-driven model using the Volterra series to address DAIA in complex power systems. The proposed model effectively captures spatial-temporal relationships, integrating multiple data sources with varying sampling rates while addressing nonlinear dynamics introduced by renewable energy integration. We develop a scalable anomaly detection framework that identifies such attack patterns, including replay attacks leveraging training data. Extensive simulations on the 240-bus WECC system demonstrate the model’s superior performance, achieving robust detection and accurate data recovery with practical computational requirements. Our work provides actionable insights and configuration guidelines for ensuring power system resilience against evolving cyber threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信