随机初始化时间分数阶系统的多阶Mittag-Leffler稳定性和Lyapunov定理的新认识

Bichitra Kumar Lenka
{"title":"随机初始化时间分数阶系统的多阶Mittag-Leffler稳定性和Lyapunov定理的新认识","authors":"Bichitra Kumar Lenka","doi":"10.1016/j.fraope.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>We consider fractional order systems associated with different orders and random initialization time placed on a real number line. We introduce a new concept of multi-order Mittag-Leffler stability and formulate new proofs to Lyapunov stability theorems for random initialization time fractional order systems. The new theorems give way to measuring fractional derivatives of scalar Lyapunov functions and enable a pathway to estimate decay associated with trajectories of such systems. A few examples that deal with applications of interest have been discussed.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100282"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight to multi-order Mittag-Leffler stability and Lyapunov theorems for random initialization time fractional order systems\",\"authors\":\"Bichitra Kumar Lenka\",\"doi\":\"10.1016/j.fraope.2025.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider fractional order systems associated with different orders and random initialization time placed on a real number line. We introduce a new concept of multi-order Mittag-Leffler stability and formulate new proofs to Lyapunov stability theorems for random initialization time fractional order systems. The new theorems give way to measuring fractional derivatives of scalar Lyapunov functions and enable a pathway to estimate decay associated with trajectories of such systems. A few examples that deal with applications of interest have been discussed.</div></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"11 \",\"pages\":\"Article 100282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186325000726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑在实数线上具有不同阶数和随机初始化时间的分数阶系统。引入了多阶Mittag-Leffler稳定性的新概念,给出了随机初始化时间分数阶系统Lyapunov稳定性定理的新证明。新的定理为测量标量李雅普诺夫函数的分数阶导数提供了途径,并为估计与此类系统轨迹相关的衰变提供了途径。本文还讨论了一些有关应用的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New insight to multi-order Mittag-Leffler stability and Lyapunov theorems for random initialization time fractional order systems
We consider fractional order systems associated with different orders and random initialization time placed on a real number line. We introduce a new concept of multi-order Mittag-Leffler stability and formulate new proofs to Lyapunov stability theorems for random initialization time fractional order systems. The new theorems give way to measuring fractional derivatives of scalar Lyapunov functions and enable a pathway to estimate decay associated with trajectories of such systems. A few examples that deal with applications of interest have been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信