基于语音的抑郁症识别的注意引导双向时间感知网络

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingyi Liu , Yuanyuan Shang , Mengyuan Yang , Zhuhong Shao , Hui Ding , Tie Liu
{"title":"基于语音的抑郁症识别的注意引导双向时间感知网络","authors":"Jingyi Liu ,&nbsp;Yuanyuan Shang ,&nbsp;Mengyuan Yang ,&nbsp;Zhuhong Shao ,&nbsp;Hui Ding ,&nbsp;Tie Liu","doi":"10.1016/j.dsp.2025.105359","DOIUrl":null,"url":null,"abstract":"<div><div>Depression is a serious mental illness that affects daily life and has drawn increasing global concern. While speech contains valuable emotional markers for depression recognition, accurate estimation remains challenging. We propose the Attention Guided Bi-direction Temporal-aware Network (AGBiTNet), a novel architecture designed for speech-based depression recognition. AGBiTNet incorporates a Bi-direction Temporal-aware Module (BiTM) to capture bidirectional temporal dependencies and a Frequency-aware Attention Module (FAM) to extract discriminative emotional cues from multi-scale spectral representations. To further enhance regression accuracy and improve feature robustness, a joint loss combining Huber loss and Generalized End-to-End (GE2E) loss is adopted. Extensive experiments on AVEC 2013, 2014, and 2017 datasets demonstrate that AGBiTNet achieves competitive performance with RMSE/MAE values of 9.36/7.21, 9.38/7.24, and 5.29/4.20, respectively. Ablation and statistical analyses confirm the reliability of these results, highlighting the proposed approach as an effective and lightweight solution for speech-based depression assessment with promising practical applicability.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"166 ","pages":"Article 105359"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-Guided Bi-direction Temporal-aware Network for speech-based depression recognition\",\"authors\":\"Jingyi Liu ,&nbsp;Yuanyuan Shang ,&nbsp;Mengyuan Yang ,&nbsp;Zhuhong Shao ,&nbsp;Hui Ding ,&nbsp;Tie Liu\",\"doi\":\"10.1016/j.dsp.2025.105359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Depression is a serious mental illness that affects daily life and has drawn increasing global concern. While speech contains valuable emotional markers for depression recognition, accurate estimation remains challenging. We propose the Attention Guided Bi-direction Temporal-aware Network (AGBiTNet), a novel architecture designed for speech-based depression recognition. AGBiTNet incorporates a Bi-direction Temporal-aware Module (BiTM) to capture bidirectional temporal dependencies and a Frequency-aware Attention Module (FAM) to extract discriminative emotional cues from multi-scale spectral representations. To further enhance regression accuracy and improve feature robustness, a joint loss combining Huber loss and Generalized End-to-End (GE2E) loss is adopted. Extensive experiments on AVEC 2013, 2014, and 2017 datasets demonstrate that AGBiTNet achieves competitive performance with RMSE/MAE values of 9.36/7.21, 9.38/7.24, and 5.29/4.20, respectively. Ablation and statistical analyses confirm the reliability of these results, highlighting the proposed approach as an effective and lightweight solution for speech-based depression assessment with promising practical applicability.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"166 \",\"pages\":\"Article 105359\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425003811\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425003811","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症是一种影响日常生活的严重精神疾病,已引起全球越来越多的关注。虽然言语包含有识别抑郁症的有价值的情绪标记,但准确的估计仍然具有挑战性。我们提出了注意力引导双向时间感知网络(AGBiTNet),这是一种基于语音的抑郁症识别的新架构。AGBiTNet包含一个双向时间感知模块(BiTM)来捕获双向时间依赖性,以及一个频率感知注意模块(FAM)来从多尺度频谱表示中提取判别性情绪线索。为了进一步提高回归精度和增强特征鲁棒性,采用Huber损失和广义端到端(GE2E)损失相结合的联合损失。在AVEC 2013、2014和2017数据集上的大量实验表明,AGBiTNet的RMSE/MAE值分别为9.36/7.21、9.38/7.24和5.29/4.20,具有竞争力。消融和统计分析证实了这些结果的可靠性,强调了该方法是一种有效且轻量级的基于语音的抑郁症评估解决方案,具有良好的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-Guided Bi-direction Temporal-aware Network for speech-based depression recognition
Depression is a serious mental illness that affects daily life and has drawn increasing global concern. While speech contains valuable emotional markers for depression recognition, accurate estimation remains challenging. We propose the Attention Guided Bi-direction Temporal-aware Network (AGBiTNet), a novel architecture designed for speech-based depression recognition. AGBiTNet incorporates a Bi-direction Temporal-aware Module (BiTM) to capture bidirectional temporal dependencies and a Frequency-aware Attention Module (FAM) to extract discriminative emotional cues from multi-scale spectral representations. To further enhance regression accuracy and improve feature robustness, a joint loss combining Huber loss and Generalized End-to-End (GE2E) loss is adopted. Extensive experiments on AVEC 2013, 2014, and 2017 datasets demonstrate that AGBiTNet achieves competitive performance with RMSE/MAE values of 9.36/7.21, 9.38/7.24, and 5.29/4.20, respectively. Ablation and statistical analyses confirm the reliability of these results, highlighting the proposed approach as an effective and lightweight solution for speech-based depression assessment with promising practical applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信