一种通用且易于使用的数据驱动方法,用于从全球城市的极地轨道器获得的定向地表温度的角归一化

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Huilin Du , Wenfeng Zhan , Zihan Liu , Chenguang Wang , Fan Huang
{"title":"一种通用且易于使用的数据驱动方法,用于从全球城市的极地轨道器获得的定向地表温度的角归一化","authors":"Huilin Du ,&nbsp;Wenfeng Zhan ,&nbsp;Zihan Liu ,&nbsp;Chenguang Wang ,&nbsp;Fan Huang","doi":"10.1016/j.rse.2025.114840","DOIUrl":null,"url":null,"abstract":"<div><div>Urban thermal anisotropy poses significant challenges for accurately retrieving land surface temperature (LST) in urban environments using wide-swath polar orbiters. Existing physical and kernel-driven models often require detailed urban structural and property information or rely on simultaneous multi-angle LST observations, limiting their applicability for normalizing directional LSTs across diverse urban settings worldwide. Here we propose a UNIversal, easy-To-usE Data-driven (UNITED) method for angular normalization of directional LSTs across global cities, integrating advanced machine learning techniques with multi-source remote sensing and reanalysis data. We applied this method to normalize directional urban LSTs from all available wide-swath polar orbiters (Aqua MODIS, Terra MODIS, Suomi-NPP VIIRS) on Google Earth Engine, leveraging their full archives of multi-angle observations (2003–2024 for MODIS and 2012–2024 for VIIRS). The method's high accuracy in normalizing these three products was rigorously validated using quasi-simultaneous, near-nadir LSTs from various satellite platforms (e.g., Landsat) across tens of millions of urban pixels worldwide under diverse spatial, temporal, and angular conditions. For example, for Aqua MODIS observations with viewing zenith angle exceeding ±55°, angular normalization reduces the root mean square error and bias relative to nadir VIIRS LSTs (used as the reference) from 5.71 °C and −4.92 °C to 2.43 °C and −0.40 °C, respectively, underscoring the effectiveness of the UNITED method in harmonizing directional urban LSTs. Our study holds significant implications for advancing urban thermal remote sensing.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114840"},"PeriodicalIF":11.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal yet easy-to-use data-driven method for angular normalization of directional land surface temperatures acquired from polar orbiters across global cities\",\"authors\":\"Huilin Du ,&nbsp;Wenfeng Zhan ,&nbsp;Zihan Liu ,&nbsp;Chenguang Wang ,&nbsp;Fan Huang\",\"doi\":\"10.1016/j.rse.2025.114840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban thermal anisotropy poses significant challenges for accurately retrieving land surface temperature (LST) in urban environments using wide-swath polar orbiters. Existing physical and kernel-driven models often require detailed urban structural and property information or rely on simultaneous multi-angle LST observations, limiting their applicability for normalizing directional LSTs across diverse urban settings worldwide. Here we propose a UNIversal, easy-To-usE Data-driven (UNITED) method for angular normalization of directional LSTs across global cities, integrating advanced machine learning techniques with multi-source remote sensing and reanalysis data. We applied this method to normalize directional urban LSTs from all available wide-swath polar orbiters (Aqua MODIS, Terra MODIS, Suomi-NPP VIIRS) on Google Earth Engine, leveraging their full archives of multi-angle observations (2003–2024 for MODIS and 2012–2024 for VIIRS). The method's high accuracy in normalizing these three products was rigorously validated using quasi-simultaneous, near-nadir LSTs from various satellite platforms (e.g., Landsat) across tens of millions of urban pixels worldwide under diverse spatial, temporal, and angular conditions. For example, for Aqua MODIS observations with viewing zenith angle exceeding ±55°, angular normalization reduces the root mean square error and bias relative to nadir VIIRS LSTs (used as the reference) from 5.71 °C and −4.92 °C to 2.43 °C and −0.40 °C, respectively, underscoring the effectiveness of the UNITED method in harmonizing directional urban LSTs. Our study holds significant implications for advancing urban thermal remote sensing.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"328 \",\"pages\":\"Article 114840\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725002445\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725002445","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市热的各向异性给利用宽波段极地轨道器准确反演城市地表温度带来了重大挑战。现有的物理和核驱动模型通常需要详细的城市结构和属性信息,或者依赖于同时进行的多角度LST观测,这限制了它们在全球不同城市环境中规格化定向LST的适用性。本文提出了一种通用的、易于使用的数据驱动(UNITED)方法,将先进的机器学习技术与多源遥感和再分析数据相结合,用于全球城市定向lst的角度归一化。我们利用谷歌地球引擎上所有可用的宽幅极轨卫星(Aqua MODIS、Terra MODIS、Suomi-NPP VIIRS)的多角度观测档案(MODIS为2003-2024年,VIIRS为2012-2024年),将该方法应用于定向城市lst的归一化。在不同的空间、时间和角度条件下,使用来自不同卫星平台(例如Landsat)的准同时、接近最低点的lst,严格验证了该方法在标准化这三种产品方面的高精度。例如,对于观测天顶角超过±55°的Aqua MODIS观测数据,角归一化将相对于最低点VIIRS lst(作为参考)的均方根误差和偏差分别从5.71°C和- 4.92°C降低到2.43°C和- 0.40°C,强调了UNITED方法在协调定向城市lst方面的有效性。本研究对推进城市热遥感具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A universal yet easy-to-use data-driven method for angular normalization of directional land surface temperatures acquired from polar orbiters across global cities
Urban thermal anisotropy poses significant challenges for accurately retrieving land surface temperature (LST) in urban environments using wide-swath polar orbiters. Existing physical and kernel-driven models often require detailed urban structural and property information or rely on simultaneous multi-angle LST observations, limiting their applicability for normalizing directional LSTs across diverse urban settings worldwide. Here we propose a UNIversal, easy-To-usE Data-driven (UNITED) method for angular normalization of directional LSTs across global cities, integrating advanced machine learning techniques with multi-source remote sensing and reanalysis data. We applied this method to normalize directional urban LSTs from all available wide-swath polar orbiters (Aqua MODIS, Terra MODIS, Suomi-NPP VIIRS) on Google Earth Engine, leveraging their full archives of multi-angle observations (2003–2024 for MODIS and 2012–2024 for VIIRS). The method's high accuracy in normalizing these three products was rigorously validated using quasi-simultaneous, near-nadir LSTs from various satellite platforms (e.g., Landsat) across tens of millions of urban pixels worldwide under diverse spatial, temporal, and angular conditions. For example, for Aqua MODIS observations with viewing zenith angle exceeding ±55°, angular normalization reduces the root mean square error and bias relative to nadir VIIRS LSTs (used as the reference) from 5.71 °C and −4.92 °C to 2.43 °C and −0.40 °C, respectively, underscoring the effectiveness of the UNITED method in harmonizing directional urban LSTs. Our study holds significant implications for advancing urban thermal remote sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信