Sofia Di Leonardo , Danila Vella , Calogera Pisano , Vincenzo Argano , Gaetano Burriesci
{"title":"由主动脉下膜引起的流体动力学改变:一项体外研究","authors":"Sofia Di Leonardo , Danila Vella , Calogera Pisano , Vincenzo Argano , Gaetano Burriesci","doi":"10.1016/j.irbm.2025.100897","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Subaortic stenosis is an aortic disease characterised by the presence of a membrane located at the aortic valve inlet, that causes a sudden reduction of the inflow lumen. The membrane develops as a tissue growth of variable thickness that can cause a major increase in the pressure gradient. In this case, when diagnosed, it is removed by surgical resection.</div></div><div><h3>Methods</h3><div>To investigate the haemodynamic alteration introduced by subaortic membranes, an <em>in vitro</em> study was designed and performed. Stiff and flexible membranes were implanted at the inlet of a bioprosthetic control valve. These mock membranes had different radial and angular alignment, modelling concentric and eccentric orifice positions. For each configuration, a range of different membrane extensions was studied, progressively reducing the orifice area at the inlet of the control valve.</div></div><div><h3>Results</h3><div>Analysis of the hydrodynamic performances indicates that the detrimental effect of subaortic membranes becomes significant when the membrane orifice areas reduce below 75% of the unobstructed inflow lumen. Video analysis of the valve leaflets dynamics indicates that, together with a worsening in the systolic pressure gradient, the presence of subaortic membranes increases cusps fluttering. As the membrane orifice area reduces, leaflets experience faster oscillation frequencies at decreasing amplitudes.</div></div><div><h3>Conclusions</h3><div>The fibromuscular or thin nature of the membrane has a significant role on the severity of the pathology, with higher stiffnesses generally producing worse hydrodynamics. The orifice dimension and position are also important on the systolic performance and can determine potential structural degradation and haematic damage.</div></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"46 4","pages":"Article 100897"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic Alterations Produced by Subaortic Membranes: An in Vitro Study\",\"authors\":\"Sofia Di Leonardo , Danila Vella , Calogera Pisano , Vincenzo Argano , Gaetano Burriesci\",\"doi\":\"10.1016/j.irbm.2025.100897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Subaortic stenosis is an aortic disease characterised by the presence of a membrane located at the aortic valve inlet, that causes a sudden reduction of the inflow lumen. The membrane develops as a tissue growth of variable thickness that can cause a major increase in the pressure gradient. In this case, when diagnosed, it is removed by surgical resection.</div></div><div><h3>Methods</h3><div>To investigate the haemodynamic alteration introduced by subaortic membranes, an <em>in vitro</em> study was designed and performed. Stiff and flexible membranes were implanted at the inlet of a bioprosthetic control valve. These mock membranes had different radial and angular alignment, modelling concentric and eccentric orifice positions. For each configuration, a range of different membrane extensions was studied, progressively reducing the orifice area at the inlet of the control valve.</div></div><div><h3>Results</h3><div>Analysis of the hydrodynamic performances indicates that the detrimental effect of subaortic membranes becomes significant when the membrane orifice areas reduce below 75% of the unobstructed inflow lumen. Video analysis of the valve leaflets dynamics indicates that, together with a worsening in the systolic pressure gradient, the presence of subaortic membranes increases cusps fluttering. As the membrane orifice area reduces, leaflets experience faster oscillation frequencies at decreasing amplitudes.</div></div><div><h3>Conclusions</h3><div>The fibromuscular or thin nature of the membrane has a significant role on the severity of the pathology, with higher stiffnesses generally producing worse hydrodynamics. The orifice dimension and position are also important on the systolic performance and can determine potential structural degradation and haematic damage.</div></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"46 4\",\"pages\":\"Article 100897\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031825000223\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031825000223","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hydrodynamic Alterations Produced by Subaortic Membranes: An in Vitro Study
Background
Subaortic stenosis is an aortic disease characterised by the presence of a membrane located at the aortic valve inlet, that causes a sudden reduction of the inflow lumen. The membrane develops as a tissue growth of variable thickness that can cause a major increase in the pressure gradient. In this case, when diagnosed, it is removed by surgical resection.
Methods
To investigate the haemodynamic alteration introduced by subaortic membranes, an in vitro study was designed and performed. Stiff and flexible membranes were implanted at the inlet of a bioprosthetic control valve. These mock membranes had different radial and angular alignment, modelling concentric and eccentric orifice positions. For each configuration, a range of different membrane extensions was studied, progressively reducing the orifice area at the inlet of the control valve.
Results
Analysis of the hydrodynamic performances indicates that the detrimental effect of subaortic membranes becomes significant when the membrane orifice areas reduce below 75% of the unobstructed inflow lumen. Video analysis of the valve leaflets dynamics indicates that, together with a worsening in the systolic pressure gradient, the presence of subaortic membranes increases cusps fluttering. As the membrane orifice area reduces, leaflets experience faster oscillation frequencies at decreasing amplitudes.
Conclusions
The fibromuscular or thin nature of the membrane has a significant role on the severity of the pathology, with higher stiffnesses generally producing worse hydrodynamics. The orifice dimension and position are also important on the systolic performance and can determine potential structural degradation and haematic damage.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…