Changxin Yang , Zhongyi Zhu , Hongmei Lin , Zengyan Fan , Heng Lian
{"title":"Tobit模型中变量选择的分布式迭代硬阈值","authors":"Changxin Yang , Zhongyi Zhu , Hongmei Lin , Zengyan Fan , Heng Lian","doi":"10.1016/j.csda.2025.108227","DOIUrl":null,"url":null,"abstract":"<div><div>While there is a substantial body of research on high-dimensional regression with left-censored responses, few methods address this problem in a distributed manner. Due to data transmission limitations and privacy concerns, centralizing all data is often impractical, necessitating a method for collaborative learning with distributed data. In this paper, we employ the Iterative Hard Thresholding (IHT) method for the Tobit model to address this challenge, allowing one to directly specify the desired sparsity and offering an alternative estimation and variable selection approach. Theoretical analysis shows that our estimator achieves a nearly minimax-optimal convergence rate using only a few rounds of communication. Its practical performance is evaluated under both the pooled and the distributed setting. The former highlights its competitive estimation efficiency and variable selection performance compared to existing approaches, while the latter demonstrates that the decentralized estimator closely matches the performance of its centralized counterpart. When applied to high-dimensional left-censored HIV viral load data, our method also demonstrates comparable performance.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108227"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed iterative hard thresholding for variable selection in Tobit models\",\"authors\":\"Changxin Yang , Zhongyi Zhu , Hongmei Lin , Zengyan Fan , Heng Lian\",\"doi\":\"10.1016/j.csda.2025.108227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While there is a substantial body of research on high-dimensional regression with left-censored responses, few methods address this problem in a distributed manner. Due to data transmission limitations and privacy concerns, centralizing all data is often impractical, necessitating a method for collaborative learning with distributed data. In this paper, we employ the Iterative Hard Thresholding (IHT) method for the Tobit model to address this challenge, allowing one to directly specify the desired sparsity and offering an alternative estimation and variable selection approach. Theoretical analysis shows that our estimator achieves a nearly minimax-optimal convergence rate using only a few rounds of communication. Its practical performance is evaluated under both the pooled and the distributed setting. The former highlights its competitive estimation efficiency and variable selection performance compared to existing approaches, while the latter demonstrates that the decentralized estimator closely matches the performance of its centralized counterpart. When applied to high-dimensional left-censored HIV viral load data, our method also demonstrates comparable performance.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"211 \",\"pages\":\"Article 108227\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Distributed iterative hard thresholding for variable selection in Tobit models
While there is a substantial body of research on high-dimensional regression with left-censored responses, few methods address this problem in a distributed manner. Due to data transmission limitations and privacy concerns, centralizing all data is often impractical, necessitating a method for collaborative learning with distributed data. In this paper, we employ the Iterative Hard Thresholding (IHT) method for the Tobit model to address this challenge, allowing one to directly specify the desired sparsity and offering an alternative estimation and variable selection approach. Theoretical analysis shows that our estimator achieves a nearly minimax-optimal convergence rate using only a few rounds of communication. Its practical performance is evaluated under both the pooled and the distributed setting. The former highlights its competitive estimation efficiency and variable selection performance compared to existing approaches, while the latter demonstrates that the decentralized estimator closely matches the performance of its centralized counterpart. When applied to high-dimensional left-censored HIV viral load data, our method also demonstrates comparable performance.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]