Youngeun Hong, Changkyu Park, Junseong Jang, Minseok Oh, Dongwook Kim, Seunghoon Lee, Seung Youn Hong
{"title":"协同有机硫/光氧化还原催化通过球内电子穿梭实现自由基-极性交叉C(sp3) -N耦合","authors":"Youngeun Hong, Changkyu Park, Junseong Jang, Minseok Oh, Dongwook Kim, Seunghoon Lee, Seung Youn Hong","doi":"10.1021/jacs.5c00352","DOIUrl":null,"url":null,"abstract":"Radical-polar crossover (RPC) is a valuable mechanistic tool for revitalizing traditional radical and polar chemistries by integrating them. However, transitioning from radical to polar pathways across multiple redox events requires precise redox potential matching between the reaction components (catalysts and substrates), which inherently limits the scope of these transformations. Here, we present a cooperative catalytic platform that diverts the key RPC mechanism from outer-sphere to inner-sphere manifolds, enabling C(sp<sup>3</sup>)–N coupling of redox active esters with otherwise oxidizable (hetero)arylamines. The key to success is the identification of organosulfur catalyst capable of selectively shuttling electrons between the photocatalyst and the incipient radical in preference to competing arylamine oxidation. Experimental and computational studies reveal that the tailored organosulfur catalyst plays a crucial role in steering the post-radical generation steps to guide the desired reaction trajectory for C(sp<sup>3</sup>)–N bond formation. This method displays good functional group compatibility and chemoselectivity, providing an efficient route to functionally rich secondary and tertiary arylamines. The virtue of this method was further demonstrated by late-stage applications for synthesizing medically relevant nitrogen-containing compounds.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"246 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Organosulfur/Photoredox Catalysis Enables Radical-Polar Crossover C(sp3)–N Coupling via Inner-Sphere Electron Shuttling\",\"authors\":\"Youngeun Hong, Changkyu Park, Junseong Jang, Minseok Oh, Dongwook Kim, Seunghoon Lee, Seung Youn Hong\",\"doi\":\"10.1021/jacs.5c00352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radical-polar crossover (RPC) is a valuable mechanistic tool for revitalizing traditional radical and polar chemistries by integrating them. However, transitioning from radical to polar pathways across multiple redox events requires precise redox potential matching between the reaction components (catalysts and substrates), which inherently limits the scope of these transformations. Here, we present a cooperative catalytic platform that diverts the key RPC mechanism from outer-sphere to inner-sphere manifolds, enabling C(sp<sup>3</sup>)–N coupling of redox active esters with otherwise oxidizable (hetero)arylamines. The key to success is the identification of organosulfur catalyst capable of selectively shuttling electrons between the photocatalyst and the incipient radical in preference to competing arylamine oxidation. Experimental and computational studies reveal that the tailored organosulfur catalyst plays a crucial role in steering the post-radical generation steps to guide the desired reaction trajectory for C(sp<sup>3</sup>)–N bond formation. This method displays good functional group compatibility and chemoselectivity, providing an efficient route to functionally rich secondary and tertiary arylamines. The virtue of this method was further demonstrated by late-stage applications for synthesizing medically relevant nitrogen-containing compounds.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"246 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c00352\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00352","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cooperative Organosulfur/Photoredox Catalysis Enables Radical-Polar Crossover C(sp3)–N Coupling via Inner-Sphere Electron Shuttling
Radical-polar crossover (RPC) is a valuable mechanistic tool for revitalizing traditional radical and polar chemistries by integrating them. However, transitioning from radical to polar pathways across multiple redox events requires precise redox potential matching between the reaction components (catalysts and substrates), which inherently limits the scope of these transformations. Here, we present a cooperative catalytic platform that diverts the key RPC mechanism from outer-sphere to inner-sphere manifolds, enabling C(sp3)–N coupling of redox active esters with otherwise oxidizable (hetero)arylamines. The key to success is the identification of organosulfur catalyst capable of selectively shuttling electrons between the photocatalyst and the incipient radical in preference to competing arylamine oxidation. Experimental and computational studies reveal that the tailored organosulfur catalyst plays a crucial role in steering the post-radical generation steps to guide the desired reaction trajectory for C(sp3)–N bond formation. This method displays good functional group compatibility and chemoselectivity, providing an efficient route to functionally rich secondary and tertiary arylamines. The virtue of this method was further demonstrated by late-stage applications for synthesizing medically relevant nitrogen-containing compounds.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.