{"title":"使用深度学习和图傅里叶变换识别复杂和3D组织的空间转录组学中的空间域","authors":"Shuli Sun, Jixin Liu, Guojun Li, Bingqiang Liu","doi":"10.1186/s13059-025-03631-5","DOIUrl":null,"url":null,"abstract":"The rapid advancements in spatially resolved transcriptomics (SRT) enable the characterization of gene expressions while preserving spatial information. However, high dropout rates and noise hinder accurate spatial domain identification for understanding tissue architecture. We present DeepGFT, a method that simultaneously models spot-wise and gene-wise relationships by integrating deep learning with graph Fourier transform for spatial domain identification. Benchmarking results demonstrate the superiority of DeepGFT over existing methods. DeepGFT detects tumor substructures with immune-related differences in human breast cancer, identifies the complex germinal centers accurately in human lymph node, and accurately reveals the developmental changes in 3D Drosophila data.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"43 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepGFT: identifying spatial domains in spatial transcriptomics of complex and 3D tissue using deep learning and graph Fourier transform\",\"authors\":\"Shuli Sun, Jixin Liu, Guojun Li, Bingqiang Liu\",\"doi\":\"10.1186/s13059-025-03631-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancements in spatially resolved transcriptomics (SRT) enable the characterization of gene expressions while preserving spatial information. However, high dropout rates and noise hinder accurate spatial domain identification for understanding tissue architecture. We present DeepGFT, a method that simultaneously models spot-wise and gene-wise relationships by integrating deep learning with graph Fourier transform for spatial domain identification. Benchmarking results demonstrate the superiority of DeepGFT over existing methods. DeepGFT detects tumor substructures with immune-related differences in human breast cancer, identifies the complex germinal centers accurately in human lymph node, and accurately reveals the developmental changes in 3D Drosophila data.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03631-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03631-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
DeepGFT: identifying spatial domains in spatial transcriptomics of complex and 3D tissue using deep learning and graph Fourier transform
The rapid advancements in spatially resolved transcriptomics (SRT) enable the characterization of gene expressions while preserving spatial information. However, high dropout rates and noise hinder accurate spatial domain identification for understanding tissue architecture. We present DeepGFT, a method that simultaneously models spot-wise and gene-wise relationships by integrating deep learning with graph Fourier transform for spatial domain identification. Benchmarking results demonstrate the superiority of DeepGFT over existing methods. DeepGFT detects tumor substructures with immune-related differences in human breast cancer, identifies the complex germinal centers accurately in human lymph node, and accurately reveals the developmental changes in 3D Drosophila data.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.