Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh
{"title":"具有巨磁热效应的非化学计量Fe2P−型合金的热滞后设计","authors":"Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh","doi":"10.1103/physrevb.111.224401","DOIUrl":null,"url":null,"abstract":"The nonstoichiometric Fe</a:mi>2</a:mn></a:msub>P</a:mi></a:mrow></a:math>-type <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>FeMn</c:mi><c:mrow><c:mo>(</c:mo><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi><c:mo>)</c:mo></c:mrow></c:msub><c:msub><c:mi mathvariant=\"normal\">V</c:mi><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:msub><c:mi mathvariant=\"normal\">P</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:msub><c:mi>Si</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow></c:math> alloys <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mo>(</f:mo><f:mi>x</f:mi><f:mo>=</f:mo><f:mn>0</f:mn><f:mo>,</f:mo><f:mn>0.01</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mn>0.02</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mtext>and</f:mtext><f:mo> </f:mo><f:mn>0.03</f:mn><f:mo>)</f:mo></f:mrow></f:math> have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mi>x</g:mi></g:math>, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mo>(</h:mo><h:mi mathvariant=\"normal\">Δ</h:mi><h:msub><h:mi>S</h:mi><h:mi>M</h:mi></h:msub><h:mo>)</h:mo></h:mrow></h:math>; 15.7 J/(kg K), at 2 T magnetic field for the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:mi>x</j:mi><j:mo>=</j:mo><j:mn>0</j:mn></j:mrow></j:math> alloy. <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:mi mathvariant=\"normal\">Δ</k:mi><k:msub><k:mi>S</k:mi><k:mi>M</k:mi></k:msub></k:mrow></k:math> decreases with increasing <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi>x</m:mi></m:math>. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mrow><n:mi mathvariant=\"normal\">Δ</n:mi><n:msub><n:mi>S</n:mi><n:mi>M</n:mi></n:msub></n:mrow></n:math>. The thermal hysteresis <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:mo>(</p:mo><p:mi mathvariant=\"normal\">Δ</p:mi><p:msub><p:mi>T</p:mi><p:mi>hyst</p:mi></p:msub><p:mo>)</p:mo></p:mrow></p:math> of the magnetic phase transition decreases with increasing <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\"><r:mi>x</r:mi></r:math>, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:mrow><s:mi mathvariant=\"normal\">Δ</s:mi><s:msub><s:mi>T</s:mi><s:mi>ad</s:mi></s:msub></s:mrow></s:math>, which highly depends on <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\"><u:mrow><u:mi mathvariant=\"normal\">Δ</u:mi><u:msub><u:mi>T</u:mi><u:mi>hyst</u:mi></u:msub></u:mrow></u:math>, is 1.7 K at 1.9 T applied field for the <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\"><w:mrow><w:mi>x</w:mi><w:mo>=</w:mo><w:mn>0.02</w:mn></w:mrow></w:math> alloy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"107 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of thermal hysteresis in nonstoichiometric Fe2P−type alloys with giant magnetocaloric effect\",\"authors\":\"Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh\",\"doi\":\"10.1103/physrevb.111.224401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonstoichiometric Fe</a:mi>2</a:mn></a:msub>P</a:mi></a:mrow></a:math>-type <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:mrow><c:msub><c:mi>FeMn</c:mi><c:mrow><c:mo>(</c:mo><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi><c:mo>)</c:mo></c:mrow></c:msub><c:msub><c:mi mathvariant=\\\"normal\\\">V</c:mi><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:msub><c:mi mathvariant=\\\"normal\\\">P</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:msub><c:mi>Si</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow></c:math> alloys <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mrow><f:mo>(</f:mo><f:mi>x</f:mi><f:mo>=</f:mo><f:mn>0</f:mn><f:mo>,</f:mo><f:mn>0.01</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mn>0.02</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mtext>and</f:mtext><f:mo> </f:mo><f:mn>0.03</f:mn><f:mo>)</f:mo></f:mrow></f:math> have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mi>x</g:mi></g:math>, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mo>(</h:mo><h:mi mathvariant=\\\"normal\\\">Δ</h:mi><h:msub><h:mi>S</h:mi><h:mi>M</h:mi></h:msub><h:mo>)</h:mo></h:mrow></h:math>; 15.7 J/(kg K), at 2 T magnetic field for the <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\"><j:mrow><j:mi>x</j:mi><j:mo>=</j:mo><j:mn>0</j:mn></j:mrow></j:math> alloy. <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\"><k:mrow><k:mi mathvariant=\\\"normal\\\">Δ</k:mi><k:msub><k:mi>S</k:mi><k:mi>M</k:mi></k:msub></k:mrow></k:math> decreases with increasing <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mi>x</m:mi></m:math>. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\"><n:mrow><n:mi mathvariant=\\\"normal\\\">Δ</n:mi><n:msub><n:mi>S</n:mi><n:mi>M</n:mi></n:msub></n:mrow></n:math>. The thermal hysteresis <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\"><p:mrow><p:mo>(</p:mo><p:mi mathvariant=\\\"normal\\\">Δ</p:mi><p:msub><p:mi>T</p:mi><p:mi>hyst</p:mi></p:msub><p:mo>)</p:mo></p:mrow></p:math> of the magnetic phase transition decreases with increasing <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\"><r:mi>x</r:mi></r:math>, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\"><s:mrow><s:mi mathvariant=\\\"normal\\\">Δ</s:mi><s:msub><s:mi>T</s:mi><s:mi>ad</s:mi></s:msub></s:mrow></s:math>, which highly depends on <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\"><u:mrow><u:mi mathvariant=\\\"normal\\\">Δ</u:mi><u:msub><u:mi>T</u:mi><u:mi>hyst</u:mi></u:msub></u:mrow></u:math>, is 1.7 K at 1.9 T applied field for the <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\"><w:mrow><w:mi>x</w:mi><w:mo>=</w:mo><w:mn>0.02</w:mn></w:mrow></w:math> alloy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.224401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.224401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Design of thermal hysteresis in nonstoichiometric Fe2P−type alloys with giant magnetocaloric effect
The nonstoichiometric Fe2P-type FeMn(1−x)Vx(P0.5Si0.5)1−x alloys (x=0,0.01,0.02,and0.03) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration x, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change (ΔSM); 15.7 J/(kg K), at 2 T magnetic field for the x=0 alloy. ΔSM decreases with increasing x. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as ΔSM. The thermal hysteresis (ΔThyst) of the magnetic phase transition decreases with increasing x, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change ΔTad, which highly depends on ΔThyst, is 1.7 K at 1.9 T applied field for the x=0.02 alloy. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter