具有巨磁热效应的非化学计量Fe2P−型合金的热滞后设计

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh
{"title":"具有巨磁热效应的非化学计量Fe2P−型合金的热滞后设计","authors":"Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh","doi":"10.1103/physrevb.111.224401","DOIUrl":null,"url":null,"abstract":"The nonstoichiometric Fe</a:mi>2</a:mn></a:msub>P</a:mi></a:mrow></a:math>-type <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>FeMn</c:mi><c:mrow><c:mo>(</c:mo><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi><c:mo>)</c:mo></c:mrow></c:msub><c:msub><c:mi mathvariant=\"normal\">V</c:mi><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:msub><c:mi mathvariant=\"normal\">P</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:msub><c:mi>Si</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow></c:math> alloys <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mo>(</f:mo><f:mi>x</f:mi><f:mo>=</f:mo><f:mn>0</f:mn><f:mo>,</f:mo><f:mn>0.01</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mn>0.02</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mtext>and</f:mtext><f:mo> </f:mo><f:mn>0.03</f:mn><f:mo>)</f:mo></f:mrow></f:math> have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mi>x</g:mi></g:math>, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mo>(</h:mo><h:mi mathvariant=\"normal\">Δ</h:mi><h:msub><h:mi>S</h:mi><h:mi>M</h:mi></h:msub><h:mo>)</h:mo></h:mrow></h:math>; 15.7 J/(kg K), at 2 T magnetic field for the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:mi>x</j:mi><j:mo>=</j:mo><j:mn>0</j:mn></j:mrow></j:math> alloy. <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:mi mathvariant=\"normal\">Δ</k:mi><k:msub><k:mi>S</k:mi><k:mi>M</k:mi></k:msub></k:mrow></k:math> decreases with increasing <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi>x</m:mi></m:math>. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mrow><n:mi mathvariant=\"normal\">Δ</n:mi><n:msub><n:mi>S</n:mi><n:mi>M</n:mi></n:msub></n:mrow></n:math>. The thermal hysteresis <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:mo>(</p:mo><p:mi mathvariant=\"normal\">Δ</p:mi><p:msub><p:mi>T</p:mi><p:mi>hyst</p:mi></p:msub><p:mo>)</p:mo></p:mrow></p:math> of the magnetic phase transition decreases with increasing <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\"><r:mi>x</r:mi></r:math>, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:mrow><s:mi mathvariant=\"normal\">Δ</s:mi><s:msub><s:mi>T</s:mi><s:mi>ad</s:mi></s:msub></s:mrow></s:math>, which highly depends on <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\"><u:mrow><u:mi mathvariant=\"normal\">Δ</u:mi><u:msub><u:mi>T</u:mi><u:mi>hyst</u:mi></u:msub></u:mrow></u:math>, is 1.7 K at 1.9 T applied field for the <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\"><w:mrow><w:mi>x</w:mi><w:mo>=</w:mo><w:mn>0.02</w:mn></w:mrow></w:math> alloy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"107 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of thermal hysteresis in nonstoichiometric Fe2P−type alloys with giant magnetocaloric effect\",\"authors\":\"Sagar Ghorai, Rebecca Clulow, Johan Cedervall, Shuo Huang, Tore Ericsson, Lennart Häggström, Ridha Skini, Vitalii Shtender, Levente Vitos, Olle Eriksson, Franziska Scheibel, Konstantin Skokov, Oliver Gutfleisch, Martin Sahlberg, Peter Svedlindh\",\"doi\":\"10.1103/physrevb.111.224401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonstoichiometric Fe</a:mi>2</a:mn></a:msub>P</a:mi></a:mrow></a:math>-type <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:mrow><c:msub><c:mi>FeMn</c:mi><c:mrow><c:mo>(</c:mo><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi><c:mo>)</c:mo></c:mrow></c:msub><c:msub><c:mi mathvariant=\\\"normal\\\">V</c:mi><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:msub><c:mi mathvariant=\\\"normal\\\">P</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:msub><c:mi>Si</c:mi><c:mrow><c:mn>0.5</c:mn></c:mrow></c:msub><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow></c:math> alloys <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mrow><f:mo>(</f:mo><f:mi>x</f:mi><f:mo>=</f:mo><f:mn>0</f:mn><f:mo>,</f:mo><f:mn>0.01</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mn>0.02</f:mn><f:mo>,</f:mo><f:mo> </f:mo><f:mtext>and</f:mtext><f:mo> </f:mo><f:mn>0.03</f:mn><f:mo>)</f:mo></f:mrow></f:math> have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mi>x</g:mi></g:math>, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mo>(</h:mo><h:mi mathvariant=\\\"normal\\\">Δ</h:mi><h:msub><h:mi>S</h:mi><h:mi>M</h:mi></h:msub><h:mo>)</h:mo></h:mrow></h:math>; 15.7 J/(kg K), at 2 T magnetic field for the <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\"><j:mrow><j:mi>x</j:mi><j:mo>=</j:mo><j:mn>0</j:mn></j:mrow></j:math> alloy. <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\"><k:mrow><k:mi mathvariant=\\\"normal\\\">Δ</k:mi><k:msub><k:mi>S</k:mi><k:mi>M</k:mi></k:msub></k:mrow></k:math> decreases with increasing <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mi>x</m:mi></m:math>. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\"><n:mrow><n:mi mathvariant=\\\"normal\\\">Δ</n:mi><n:msub><n:mi>S</n:mi><n:mi>M</n:mi></n:msub></n:mrow></n:math>. The thermal hysteresis <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\"><p:mrow><p:mo>(</p:mo><p:mi mathvariant=\\\"normal\\\">Δ</p:mi><p:msub><p:mi>T</p:mi><p:mi>hyst</p:mi></p:msub><p:mo>)</p:mo></p:mrow></p:math> of the magnetic phase transition decreases with increasing <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\"><r:mi>x</r:mi></r:math>, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\"><s:mrow><s:mi mathvariant=\\\"normal\\\">Δ</s:mi><s:msub><s:mi>T</s:mi><s:mi>ad</s:mi></s:msub></s:mrow></s:math>, which highly depends on <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\"><u:mrow><u:mi mathvariant=\\\"normal\\\">Δ</u:mi><u:msub><u:mi>T</u:mi><u:mi>hyst</u:mi></u:msub></u:mrow></u:math>, is 1.7 K at 1.9 T applied field for the <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\"><w:mrow><w:mi>x</w:mi><w:mo>=</w:mo><w:mn>0.02</w:mn></w:mrow></w:math> alloy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.224401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.224401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

非化学计量fe2p型FeMn(1−x)Vx(P0.5Si0.5)1−x合金(x=0,0.01, 0.02和0.03)作为室温下磁制冷的潜在候选材料进行了研究。随着FeV浓度的增加,磁性有序温度降低,这可以归因于磁性原子之间的铁磁耦合强度降低。这些合金的强磁弹性耦合导致等温熵变值较大(ΔSM);15.7 J/(kg K),在2t磁场下,x=0合金。ΔSM随x的增加而减小。Mössbauer的光谱结果表明,平均超细场(铁磁态)和平均中心位移(顺磁态)与ΔSM有相同的减小趋势。磁相转变的热滞后(ΔThyst)随x的增加而减小,而合金的机械稳定性由于在磁弹性相变过程中晶格体积变化的减小而提高。x=0.02合金的绝热温度变化ΔTad高度依赖于ΔThyst,在1.9 T的作用下为1.7 K。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of thermal hysteresis in nonstoichiometric Fe2P−type alloys with giant magnetocaloric effect
The nonstoichiometric Fe2P-type FeMn(1x)Vx(P0.5Si0.5)1x alloys (x=0,0.01, 0.02, and 0.03) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration x, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change (ΔSM); 15.7 J/(kg K), at 2 T magnetic field for the x=0 alloy. ΔSM decreases with increasing x. Results from Mössbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as ΔSM. The thermal hysteresis (ΔThyst) of the magnetic phase transition decreases with increasing x, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change ΔTad, which highly depends on ΔThyst, is 1.7 K at 1.9 T applied field for the x=0.02 alloy. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信