Haoran Li, Dingjie Wang, Qi Gao, Puwen Tan, Yunhao Wang, Xiaoyu Cai, Aifu Li, Yue Zhao, Andrew L. Thurman, Seyed Amir Malekpour, Ying Zhang, Roberta Sala, Andrea Cipriano, Chia-Lin Wei, Vittorio Sebastiano, Chi Song, Nancy R. Zhang, Kin Fai Au
{"title":"用miniQuant改进基因异构体定量","authors":"Haoran Li, Dingjie Wang, Qi Gao, Puwen Tan, Yunhao Wang, Xiaoyu Cai, Aifu Li, Yue Zhao, Andrew L. Thurman, Seyed Amir Malekpour, Ying Zhang, Roberta Sala, Andrea Cipriano, Chia-Lin Wei, Vittorio Sebastiano, Chi Song, Nancy R. Zhang, Kin Fai Au","doi":"10.1038/s41587-025-02633-9","DOIUrl":null,"url":null,"abstract":"<p>RNA sequencing has been widely applied for gene isoform quantification, but limitations exist in quantifying isoforms of complex genes accurately, especially for short reads. Here we identify genes that are difficult to quantify accurately with short reads and illustrate the information benefit of using long reads to quantify these regions. We present miniQuant, which ranks genes with quantification errors caused by the ambiguity of read alignments and integrates the complementary strengths of long reads and short reads with optimal combination in a gene- and data-specific manner to achieve more accurate quantification. These results are supported by rigorous mathematical proofs, validated with a wide range of simulation data, experimental validations and more than 17,000 public datasets from GTEx, TCGA and ENCODE consortia. We demonstrate miniQuant can uncover isoform switches during the differentiation of human embryonic stem cells to pharyngeal endoderm and primordial germ cell-like cells.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"99 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving gene isoform quantification with miniQuant\",\"authors\":\"Haoran Li, Dingjie Wang, Qi Gao, Puwen Tan, Yunhao Wang, Xiaoyu Cai, Aifu Li, Yue Zhao, Andrew L. Thurman, Seyed Amir Malekpour, Ying Zhang, Roberta Sala, Andrea Cipriano, Chia-Lin Wei, Vittorio Sebastiano, Chi Song, Nancy R. Zhang, Kin Fai Au\",\"doi\":\"10.1038/s41587-025-02633-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RNA sequencing has been widely applied for gene isoform quantification, but limitations exist in quantifying isoforms of complex genes accurately, especially for short reads. Here we identify genes that are difficult to quantify accurately with short reads and illustrate the information benefit of using long reads to quantify these regions. We present miniQuant, which ranks genes with quantification errors caused by the ambiguity of read alignments and integrates the complementary strengths of long reads and short reads with optimal combination in a gene- and data-specific manner to achieve more accurate quantification. These results are supported by rigorous mathematical proofs, validated with a wide range of simulation data, experimental validations and more than 17,000 public datasets from GTEx, TCGA and ENCODE consortia. We demonstrate miniQuant can uncover isoform switches during the differentiation of human embryonic stem cells to pharyngeal endoderm and primordial germ cell-like cells.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-025-02633-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02633-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Improving gene isoform quantification with miniQuant
RNA sequencing has been widely applied for gene isoform quantification, but limitations exist in quantifying isoforms of complex genes accurately, especially for short reads. Here we identify genes that are difficult to quantify accurately with short reads and illustrate the information benefit of using long reads to quantify these regions. We present miniQuant, which ranks genes with quantification errors caused by the ambiguity of read alignments and integrates the complementary strengths of long reads and short reads with optimal combination in a gene- and data-specific manner to achieve more accurate quantification. These results are supported by rigorous mathematical proofs, validated with a wide range of simulation data, experimental validations and more than 17,000 public datasets from GTEx, TCGA and ENCODE consortia. We demonstrate miniQuant can uncover isoform switches during the differentiation of human embryonic stem cells to pharyngeal endoderm and primordial germ cell-like cells.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.