{"title":"用核磁共振光谱实时探测酶乙酰化事件:对酰基辅助因子依赖的p300修饰组蛋白H4的见解。","authors":"Sophia M Dewing, Scott A Showalter","doi":"10.1002/prot.26848","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine acylation is a rapidly expanding class of post-translational modifications with largely unexplored functional roles; the study of acylations beyond acetylation is especially impeded by limited methods for their preparation, detection, and characterization in vitro. We previously reported a nuclear magnetic resonance (NMR)-based approach to monitor Nε-lysine acetylation following Ada2/Gcn5-catalyzed installation of a <sup>13</sup>C-acetyl probe on the histone H3 tail. Building on this foundation, here we expand those techniques by demonstrating the installation and <sup>1</sup>H, <sup>13</sup>C-HSQC based NMR detection of both <sup>13</sup>C-acetyl and <sup>13</sup>C-propionyl probes on the histone H4 tail using a mutant p300 lysine acetyltransferase (KAT) enzyme with enhanced activity. Additionally, we introduce a continuous evaluation method for acyltransferase reaction data, enabling the extraction of relative rate constants-a technique inspired by our laboratory's recent work on NMR methyltransferase kinetics. This study demonstrates that our NMR-based approach to assay enzymatic <sup>13</sup>C-acylation is adaptable, providing a versatile platform for investigating a range of acylations, KAT enzymes, and protein substrates. Notably, in the process of developing these methods, we observed that p300 KAT may display distinct modification site preferences and regulatory mechanisms depending on the acyl cofactor utilized, underscoring the method's potential to advance the emerging field of lysine acylation biochemistry.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Enzymatic Acetylation Events in Real Time With NMR Spectroscopy: Insights Into Acyl-Cofactor Dependent p300 Modification of Histone H4.\",\"authors\":\"Sophia M Dewing, Scott A Showalter\",\"doi\":\"10.1002/prot.26848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysine acylation is a rapidly expanding class of post-translational modifications with largely unexplored functional roles; the study of acylations beyond acetylation is especially impeded by limited methods for their preparation, detection, and characterization in vitro. We previously reported a nuclear magnetic resonance (NMR)-based approach to monitor Nε-lysine acetylation following Ada2/Gcn5-catalyzed installation of a <sup>13</sup>C-acetyl probe on the histone H3 tail. Building on this foundation, here we expand those techniques by demonstrating the installation and <sup>1</sup>H, <sup>13</sup>C-HSQC based NMR detection of both <sup>13</sup>C-acetyl and <sup>13</sup>C-propionyl probes on the histone H4 tail using a mutant p300 lysine acetyltransferase (KAT) enzyme with enhanced activity. Additionally, we introduce a continuous evaluation method for acyltransferase reaction data, enabling the extraction of relative rate constants-a technique inspired by our laboratory's recent work on NMR methyltransferase kinetics. This study demonstrates that our NMR-based approach to assay enzymatic <sup>13</sup>C-acylation is adaptable, providing a versatile platform for investigating a range of acylations, KAT enzymes, and protein substrates. Notably, in the process of developing these methods, we observed that p300 KAT may display distinct modification site preferences and regulatory mechanisms depending on the acyl cofactor utilized, underscoring the method's potential to advance the emerging field of lysine acylation biochemistry.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26848\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26848","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Probing Enzymatic Acetylation Events in Real Time With NMR Spectroscopy: Insights Into Acyl-Cofactor Dependent p300 Modification of Histone H4.
Lysine acylation is a rapidly expanding class of post-translational modifications with largely unexplored functional roles; the study of acylations beyond acetylation is especially impeded by limited methods for their preparation, detection, and characterization in vitro. We previously reported a nuclear magnetic resonance (NMR)-based approach to monitor Nε-lysine acetylation following Ada2/Gcn5-catalyzed installation of a 13C-acetyl probe on the histone H3 tail. Building on this foundation, here we expand those techniques by demonstrating the installation and 1H, 13C-HSQC based NMR detection of both 13C-acetyl and 13C-propionyl probes on the histone H4 tail using a mutant p300 lysine acetyltransferase (KAT) enzyme with enhanced activity. Additionally, we introduce a continuous evaluation method for acyltransferase reaction data, enabling the extraction of relative rate constants-a technique inspired by our laboratory's recent work on NMR methyltransferase kinetics. This study demonstrates that our NMR-based approach to assay enzymatic 13C-acylation is adaptable, providing a versatile platform for investigating a range of acylations, KAT enzymes, and protein substrates. Notably, in the process of developing these methods, we observed that p300 KAT may display distinct modification site preferences and regulatory mechanisms depending on the acyl cofactor utilized, underscoring the method's potential to advance the emerging field of lysine acylation biochemistry.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.