{"title":"ATP合成的Nath 2离子模型热力学。","authors":"Lee D. Hansen , Sunil Nath","doi":"10.1016/j.biosystems.2025.105505","DOIUrl":null,"url":null,"abstract":"<div><div>A major finding of studies of organic acid ionization was that substituents on an aliphatic chain attached to a carboxyl group have large effects on the equilibrium constant but very little effect on Δ<sub>ioniz</sub>H which is in the range 0 ± 4 kJ/mol for all carboxylic acids of this type. According to Nath’s 2-ion mechanism for ATP synthesis, succinic acid was selected by biological evolution because an acid that could be ionized with no energy input was required, i.e., with Δ<sub>ioniz</sub>H near zero. In support of this, ATP synthesis evolved in prokaryotes in a world without oxygen in the atmosphere and consequently catabolic reactions in prokaryotes that are coupled to ATP synthesis generally have small enthalpy changes. ATP synthesis in anaerobes is thus driven by the potential energy in concentration gradients. This potential energy is associated with a probability field quantified by the change in the number of microstates of particle distributions. ATP synthesis is thus powered by a probability field associated with a concentration gradient of ions consistent with Nath’s 2-ion mechanism.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"254 ","pages":"Article 105505"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of Nath’s 2-ion model for ATP synthesis\",\"authors\":\"Lee D. Hansen , Sunil Nath\",\"doi\":\"10.1016/j.biosystems.2025.105505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A major finding of studies of organic acid ionization was that substituents on an aliphatic chain attached to a carboxyl group have large effects on the equilibrium constant but very little effect on Δ<sub>ioniz</sub>H which is in the range 0 ± 4 kJ/mol for all carboxylic acids of this type. According to Nath’s 2-ion mechanism for ATP synthesis, succinic acid was selected by biological evolution because an acid that could be ionized with no energy input was required, i.e., with Δ<sub>ioniz</sub>H near zero. In support of this, ATP synthesis evolved in prokaryotes in a world without oxygen in the atmosphere and consequently catabolic reactions in prokaryotes that are coupled to ATP synthesis generally have small enthalpy changes. ATP synthesis in anaerobes is thus driven by the potential energy in concentration gradients. This potential energy is associated with a probability field quantified by the change in the number of microstates of particle distributions. ATP synthesis is thus powered by a probability field associated with a concentration gradient of ions consistent with Nath’s 2-ion mechanism.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"254 \",\"pages\":\"Article 105505\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264725001157\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725001157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Thermodynamics of Nath’s 2-ion model for ATP synthesis
A major finding of studies of organic acid ionization was that substituents on an aliphatic chain attached to a carboxyl group have large effects on the equilibrium constant but very little effect on ΔionizH which is in the range 0 ± 4 kJ/mol for all carboxylic acids of this type. According to Nath’s 2-ion mechanism for ATP synthesis, succinic acid was selected by biological evolution because an acid that could be ionized with no energy input was required, i.e., with ΔionizH near zero. In support of this, ATP synthesis evolved in prokaryotes in a world without oxygen in the atmosphere and consequently catabolic reactions in prokaryotes that are coupled to ATP synthesis generally have small enthalpy changes. ATP synthesis in anaerobes is thus driven by the potential energy in concentration gradients. This potential energy is associated with a probability field quantified by the change in the number of microstates of particle distributions. ATP synthesis is thus powered by a probability field associated with a concentration gradient of ions consistent with Nath’s 2-ion mechanism.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.