一个空间依赖的碎片化过程。

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Probability Theory and Related Fields Pub Date : 2025-01-01 Epub Date: 2024-10-18 DOI:10.1007/s00440-024-01325-w
Alice Callegaro, Matthew I Roberts
{"title":"一个空间依赖的碎片化过程。","authors":"Alice Callegaro, Matthew I Roberts","doi":"10.1007/s00440-024-01325-w","DOIUrl":null,"url":null,"abstract":"<p><p>We define a fragmentation process which involves rectangles breaking up into progressively smaller pieces at rates that depend on their shape. Long, thin rectangles are more likely to break quickly, whereas squares break more slowly. Each rectangle is also more likely to split along its longest side. We are interested in how the system evolves over time: how many fragments are there of different shapes and sizes, and how did they reach that state? Using a standard transformation this fragmentation process with shape-dependent rates is equivalent to a two-dimensional branching random walk in continuous time in which the branching rate and the direction of each jump depend on the particles' position. Our main theorem gives an almost sure growth rate along paths for the number of particles in the branching random walk, which in turn gives the number of fragments with a fixed shape as the solution to an optimisation problem. This is a result of interest in the context of spatial branching systems and provides an example of a multitype branching process with a continuum of types.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"192 1-2","pages":"163-266"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122663/pdf/","citationCount":"0","resultStr":"{\"title\":\"A spatially-dependent fragmentation process.\",\"authors\":\"Alice Callegaro, Matthew I Roberts\",\"doi\":\"10.1007/s00440-024-01325-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We define a fragmentation process which involves rectangles breaking up into progressively smaller pieces at rates that depend on their shape. Long, thin rectangles are more likely to break quickly, whereas squares break more slowly. Each rectangle is also more likely to split along its longest side. We are interested in how the system evolves over time: how many fragments are there of different shapes and sizes, and how did they reach that state? Using a standard transformation this fragmentation process with shape-dependent rates is equivalent to a two-dimensional branching random walk in continuous time in which the branching rate and the direction of each jump depend on the particles' position. Our main theorem gives an almost sure growth rate along paths for the number of particles in the branching random walk, which in turn gives the number of fragments with a fixed shape as the solution to an optimisation problem. This is a result of interest in the context of spatial branching systems and provides an example of a multitype branching process with a continuum of types.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"192 1-2\",\"pages\":\"163-266\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01325-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01325-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个碎片化过程,其中包括矩形以取决于其形状的速率逐渐分解成更小的块。又长又细的矩形更容易断裂得快,而正方形断裂得慢。每个矩形也更有可能沿着最长的边分裂。我们感兴趣的是系统如何随着时间的推移而演变:有多少不同形状和大小的碎片,它们是如何达到这种状态的?使用标准变换,这种具有形状依赖速率的碎片化过程相当于连续时间内的二维分支随机游走,其中分支速率和每次跳跃的方向取决于粒子的位置。我们的主要定理给出了分支随机游走中粒子数量沿路径的几乎确定的增长率,这反过来又给出了具有固定形状的碎片数量作为优化问题的解决方案。这是对空间分支系统的兴趣的结果,并提供了一个具有连续类型的多类型分支过程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatially-dependent fragmentation process.

We define a fragmentation process which involves rectangles breaking up into progressively smaller pieces at rates that depend on their shape. Long, thin rectangles are more likely to break quickly, whereas squares break more slowly. Each rectangle is also more likely to split along its longest side. We are interested in how the system evolves over time: how many fragments are there of different shapes and sizes, and how did they reach that state? Using a standard transformation this fragmentation process with shape-dependent rates is equivalent to a two-dimensional branching random walk in continuous time in which the branching rate and the direction of each jump depend on the particles' position. Our main theorem gives an almost sure growth rate along paths for the number of particles in the branching random walk, which in turn gives the number of fragments with a fixed shape as the solution to an optimisation problem. This is a result of interest in the context of spatial branching systems and provides an example of a multitype branching process with a continuum of types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信