Catherine A Pfister, Johanna Berlinghof, Maximiliana Bogan, Ulisse Cardini, Angélique Gobet, Pauline Hamon-Giraud, Jessica Hart, Natalia Jimenez, Anne Siegel, Emma Stanfield, Marine Vallet, Catherine Leblanc, Coralie Rousseau, François Thomas, Willem Stock, Simon M Dittami
{"title":"进化历史和与海藻的联系塑造了海洋细菌的基因组和代谢。","authors":"Catherine A Pfister, Johanna Berlinghof, Maximiliana Bogan, Ulisse Cardini, Angélique Gobet, Pauline Hamon-Giraud, Jessica Hart, Natalia Jimenez, Anne Siegel, Emma Stanfield, Marine Vallet, Catherine Leblanc, Coralie Rousseau, François Thomas, Willem Stock, Simon M Dittami","doi":"10.1128/msphere.00996-24","DOIUrl":null,"url":null,"abstract":"<p><p>Seaweeds harbor a rich diversity of bacteria, providing them with metabolic resources and a surface for attachment and biofilm development. The host's unique environment potentially shapes the bacterial genomes and promotes adaptations for a symbiotic lifestyle. To investigate whether the genomes of seaweed-associated bacteria are genetically and metabolically distinct from their close free-living relatives in seawater, we compared both the seaweed-associated and free-living counterparts of 72 bacterial genera across 16 seaweed hosts using whole-genome sequences or high-quality metagenome-assembled genomes. While taxonomic affiliation strongly influenced genome characteristics such as GC content, gene number, and size, host association had a lower effect overall. A reduced genome size was suggested only in <i>Nereocystis luetkeana</i>-associated microbes, while only <i>Ascophyllum nodosum</i>-associated bacteria had an increased GC content. Metabolic adaptations were indicated from the genomes of seaweed-associated bacteria, including enriched pathways for B vitamin production, complex carbohydrate utilization, and amino acid biosynthesis. In particular, <i>Flavobacteriia</i> showed the most pronounced differences between host-associated and free-living strains. We further hypothesized that bacteria associated with seaweed might have evolved to complement their host's metabolism and tested this inference by analyzing the genomes of both the seaweed <i>Ectocarpus subulatus</i> and its 28 bacterial associates but found no evidence for such complementarity. Our analyses of 72 paired bacterial genomes highlighted significant metabolic differences in seaweed-associated strains with implications for carbon, nitrogen, and sulfur cycling in the coastal ocean.</p><p><strong>Importance: </strong>We hypothesized that the unique environment of seaweeds in coastal oceans shapes bacterial genomes and promotes a symbiotic lifestyle. We compared the genomes of bacteria isolated from seaweed with bacteria from the same genus found free-living in seawater. For genome features that included the number of genes, the size of the genome, and the GC content, taxonomy was of greater importance than bacterial lifestyle. When we compared metabolic abilities, we again found a strong effect of taxonomy in determining metabolism. Although several metabolic pathways differed between free-living and host-associated bacteria, this was especially prominent for <i>Flavobacteriia</i> in the phylum <i>Bacteroidota</i>. Notably, bacteria living on seaweeds had an increased occurrence of genes for B vitamin synthesis, complex carbohydrate use, and nitrogen uptake, indicating that bacterial genomes reflect both their evolutionary history and the current environment they inhabit.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0099624"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary history and association with seaweeds shape the genomes and metabolisms of marine bacteria.\",\"authors\":\"Catherine A Pfister, Johanna Berlinghof, Maximiliana Bogan, Ulisse Cardini, Angélique Gobet, Pauline Hamon-Giraud, Jessica Hart, Natalia Jimenez, Anne Siegel, Emma Stanfield, Marine Vallet, Catherine Leblanc, Coralie Rousseau, François Thomas, Willem Stock, Simon M Dittami\",\"doi\":\"10.1128/msphere.00996-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seaweeds harbor a rich diversity of bacteria, providing them with metabolic resources and a surface for attachment and biofilm development. The host's unique environment potentially shapes the bacterial genomes and promotes adaptations for a symbiotic lifestyle. To investigate whether the genomes of seaweed-associated bacteria are genetically and metabolically distinct from their close free-living relatives in seawater, we compared both the seaweed-associated and free-living counterparts of 72 bacterial genera across 16 seaweed hosts using whole-genome sequences or high-quality metagenome-assembled genomes. While taxonomic affiliation strongly influenced genome characteristics such as GC content, gene number, and size, host association had a lower effect overall. A reduced genome size was suggested only in <i>Nereocystis luetkeana</i>-associated microbes, while only <i>Ascophyllum nodosum</i>-associated bacteria had an increased GC content. Metabolic adaptations were indicated from the genomes of seaweed-associated bacteria, including enriched pathways for B vitamin production, complex carbohydrate utilization, and amino acid biosynthesis. In particular, <i>Flavobacteriia</i> showed the most pronounced differences between host-associated and free-living strains. We further hypothesized that bacteria associated with seaweed might have evolved to complement their host's metabolism and tested this inference by analyzing the genomes of both the seaweed <i>Ectocarpus subulatus</i> and its 28 bacterial associates but found no evidence for such complementarity. Our analyses of 72 paired bacterial genomes highlighted significant metabolic differences in seaweed-associated strains with implications for carbon, nitrogen, and sulfur cycling in the coastal ocean.</p><p><strong>Importance: </strong>We hypothesized that the unique environment of seaweeds in coastal oceans shapes bacterial genomes and promotes a symbiotic lifestyle. We compared the genomes of bacteria isolated from seaweed with bacteria from the same genus found free-living in seawater. For genome features that included the number of genes, the size of the genome, and the GC content, taxonomy was of greater importance than bacterial lifestyle. When we compared metabolic abilities, we again found a strong effect of taxonomy in determining metabolism. Although several metabolic pathways differed between free-living and host-associated bacteria, this was especially prominent for <i>Flavobacteriia</i> in the phylum <i>Bacteroidota</i>. Notably, bacteria living on seaweeds had an increased occurrence of genes for B vitamin synthesis, complex carbohydrate use, and nitrogen uptake, indicating that bacterial genomes reflect both their evolutionary history and the current environment they inhabit.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0099624\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00996-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00996-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Evolutionary history and association with seaweeds shape the genomes and metabolisms of marine bacteria.
Seaweeds harbor a rich diversity of bacteria, providing them with metabolic resources and a surface for attachment and biofilm development. The host's unique environment potentially shapes the bacterial genomes and promotes adaptations for a symbiotic lifestyle. To investigate whether the genomes of seaweed-associated bacteria are genetically and metabolically distinct from their close free-living relatives in seawater, we compared both the seaweed-associated and free-living counterparts of 72 bacterial genera across 16 seaweed hosts using whole-genome sequences or high-quality metagenome-assembled genomes. While taxonomic affiliation strongly influenced genome characteristics such as GC content, gene number, and size, host association had a lower effect overall. A reduced genome size was suggested only in Nereocystis luetkeana-associated microbes, while only Ascophyllum nodosum-associated bacteria had an increased GC content. Metabolic adaptations were indicated from the genomes of seaweed-associated bacteria, including enriched pathways for B vitamin production, complex carbohydrate utilization, and amino acid biosynthesis. In particular, Flavobacteriia showed the most pronounced differences between host-associated and free-living strains. We further hypothesized that bacteria associated with seaweed might have evolved to complement their host's metabolism and tested this inference by analyzing the genomes of both the seaweed Ectocarpus subulatus and its 28 bacterial associates but found no evidence for such complementarity. Our analyses of 72 paired bacterial genomes highlighted significant metabolic differences in seaweed-associated strains with implications for carbon, nitrogen, and sulfur cycling in the coastal ocean.
Importance: We hypothesized that the unique environment of seaweeds in coastal oceans shapes bacterial genomes and promotes a symbiotic lifestyle. We compared the genomes of bacteria isolated from seaweed with bacteria from the same genus found free-living in seawater. For genome features that included the number of genes, the size of the genome, and the GC content, taxonomy was of greater importance than bacterial lifestyle. When we compared metabolic abilities, we again found a strong effect of taxonomy in determining metabolism. Although several metabolic pathways differed between free-living and host-associated bacteria, this was especially prominent for Flavobacteriia in the phylum Bacteroidota. Notably, bacteria living on seaweeds had an increased occurrence of genes for B vitamin synthesis, complex carbohydrate use, and nitrogen uptake, indicating that bacterial genomes reflect both their evolutionary history and the current environment they inhabit.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.