地球科学、金融和其他领域的幂律分布和多尺度分析:参数估计的一些准则。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0259215
Vincenzo Guerriero, Marco Tallini
{"title":"地球科学、金融和其他领域的幂律分布和多尺度分析:参数估计的一些准则。","authors":"Vincenzo Guerriero, Marco Tallini","doi":"10.1063/5.0259215","DOIUrl":null,"url":null,"abstract":"<p><p>Power-law distributions, with their interdisciplinary applications in fractals, non-linear systems, chaos theory, self-organized criticality, and scale-free systems, have garnered significant attention in recent decades. These theories find applications across various scientific disciplines, from physics to Earth sciences, social sciences, economics, and finance. Parameter estimation for such distributions can be effectively conducted by examining data at multiple scales of observation. This article illustrates practical multi-scale analysis methods through case studies from the statistical analysis of rock fractures and financial data, explaining their advantages and the underlying hypotheses and theories. Furthermore, a novel version of a maximum likelihood-based parameter estimation criterion, adapted for multi-scale samples, is presented, reassuring the audience about its applicability.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power law distribution and multi-scale analysis in Earth sciences, finance, and other fields: Some guidelines to parameter estimation.\",\"authors\":\"Vincenzo Guerriero, Marco Tallini\",\"doi\":\"10.1063/5.0259215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power-law distributions, with their interdisciplinary applications in fractals, non-linear systems, chaos theory, self-organized criticality, and scale-free systems, have garnered significant attention in recent decades. These theories find applications across various scientific disciplines, from physics to Earth sciences, social sciences, economics, and finance. Parameter estimation for such distributions can be effectively conducted by examining data at multiple scales of observation. This article illustrates practical multi-scale analysis methods through case studies from the statistical analysis of rock fractures and financial data, explaining their advantages and the underlying hypotheses and theories. Furthermore, a novel version of a maximum likelihood-based parameter estimation criterion, adapted for multi-scale samples, is presented, reassuring the audience about its applicability.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0259215\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0259215","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,幂律分布及其在分形、非线性系统、混沌理论、自组织临界性和无标度系统中的跨学科应用引起了人们的极大关注。这些理论在各个科学学科中都有应用,从物理学到地球科学、社会科学、经济学和金融学。通过对多尺度观测数据的检验,可以有效地对这类分布进行参数估计。本文通过对岩石裂隙统计分析和金融数据的实例分析,说明了实用的多尺度分析方法,说明了它们的优点和潜在的假设和理论。此外,提出了一种新的基于最大似然的参数估计准则,适用于多尺度样本,使观众确信其适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power law distribution and multi-scale analysis in Earth sciences, finance, and other fields: Some guidelines to parameter estimation.

Power-law distributions, with their interdisciplinary applications in fractals, non-linear systems, chaos theory, self-organized criticality, and scale-free systems, have garnered significant attention in recent decades. These theories find applications across various scientific disciplines, from physics to Earth sciences, social sciences, economics, and finance. Parameter estimation for such distributions can be effectively conducted by examining data at multiple scales of observation. This article illustrates practical multi-scale analysis methods through case studies from the statistical analysis of rock fractures and financial data, explaining their advantages and the underlying hypotheses and theories. Furthermore, a novel version of a maximum likelihood-based parameter estimation criterion, adapted for multi-scale samples, is presented, reassuring the audience about its applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信