帕金森病患者定时任务时脑电分形维数升高。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0274411
Raheleh Davoodi, Mahtab Mehrabbeik, Sajad Jafari, Matjaž Perc
{"title":"帕金森病患者定时任务时脑电分形维数升高。","authors":"Raheleh Davoodi, Mahtab Mehrabbeik, Sajad Jafari, Matjaž Perc","doi":"10.1063/5.0274411","DOIUrl":null,"url":null,"abstract":"<p><p>Fractal Dimension (FD), a measure of signal complexity, offers unique insights into nonlinear brain dynamics in neurodegenerative disorders. While Electroencephalography (EEG)-based biomarkers for Parkinson's disease (PD) are emerging, the fractal properties of PD-related neural activity remain underexplored. Here, we introduce FD as a novel nonlinear biomarker to distinguish PD patients (n=74) from healthy controls (n=37) during interval-timing tasks (3/7 s durations). EEG recordings revealed significantly higher FD values in PD patients during response phases, particularly in frontotemporal, parietal, and motor regions, indicating disrupted neural adaptability. Our findings reveal that short intervals engaged sensorimotor areas, while long intervals implicated frontoparietal networks, which uncovered task-specific effects. These findings highlight FD's sensitivity to PD-related neural disorganization, offering a robust diagnostic tool for capturing disease-specific complexity changes. This study establishes FD as the first EEG-derived fractal biomarker for PD, advancing our understanding of its neurophysiological mechanisms.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated EEG fractal dimension in Parkinson's during timing tasks.\",\"authors\":\"Raheleh Davoodi, Mahtab Mehrabbeik, Sajad Jafari, Matjaž Perc\",\"doi\":\"10.1063/5.0274411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fractal Dimension (FD), a measure of signal complexity, offers unique insights into nonlinear brain dynamics in neurodegenerative disorders. While Electroencephalography (EEG)-based biomarkers for Parkinson's disease (PD) are emerging, the fractal properties of PD-related neural activity remain underexplored. Here, we introduce FD as a novel nonlinear biomarker to distinguish PD patients (n=74) from healthy controls (n=37) during interval-timing tasks (3/7 s durations). EEG recordings revealed significantly higher FD values in PD patients during response phases, particularly in frontotemporal, parietal, and motor regions, indicating disrupted neural adaptability. Our findings reveal that short intervals engaged sensorimotor areas, while long intervals implicated frontoparietal networks, which uncovered task-specific effects. These findings highlight FD's sensitivity to PD-related neural disorganization, offering a robust diagnostic tool for capturing disease-specific complexity changes. This study establishes FD as the first EEG-derived fractal biomarker for PD, advancing our understanding of its neurophysiological mechanisms.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0274411\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0274411","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

分形维数(FD)是一种信号复杂性的度量,为神经退行性疾病的非线性脑动力学提供了独特的见解。虽然基于脑电图(EEG)的帕金森病(PD)生物标志物正在出现,但PD相关神经活动的分形特性仍未得到充分探索。在这里,我们引入FD作为一种新的非线性生物标志物,在间隔时间任务(3/7 s持续时间)中区分PD患者(n=74)和健康对照(n=37)。脑电图记录显示PD患者在反应期的FD值显著升高,尤其是额颞叶、顶叶和运动区,表明神经适应性受损。我们的研究结果表明,短时间间隔涉及感觉运动区域,而长时间间隔涉及额顶叶网络,这揭示了任务特异性效应。这些发现突出了FD对pd相关神经紊乱的敏感性,为捕获疾病特异性复杂性变化提供了一个强大的诊断工具。本研究确立了FD作为PD的首个eeg衍生的分形生物标志物,促进了我们对其神经生理机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated EEG fractal dimension in Parkinson's during timing tasks.

Fractal Dimension (FD), a measure of signal complexity, offers unique insights into nonlinear brain dynamics in neurodegenerative disorders. While Electroencephalography (EEG)-based biomarkers for Parkinson's disease (PD) are emerging, the fractal properties of PD-related neural activity remain underexplored. Here, we introduce FD as a novel nonlinear biomarker to distinguish PD patients (n=74) from healthy controls (n=37) during interval-timing tasks (3/7 s durations). EEG recordings revealed significantly higher FD values in PD patients during response phases, particularly in frontotemporal, parietal, and motor regions, indicating disrupted neural adaptability. Our findings reveal that short intervals engaged sensorimotor areas, while long intervals implicated frontoparietal networks, which uncovered task-specific effects. These findings highlight FD's sensitivity to PD-related neural disorganization, offering a robust diagnostic tool for capturing disease-specific complexity changes. This study establishes FD as the first EEG-derived fractal biomarker for PD, advancing our understanding of its neurophysiological mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信