细胞色素P450 4A11的新型萘基荧光底物。

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dmitri R Davydov, Kannapiran Ponraj, Nadezhda Davydova, Dilip Kumar Singh, Bhagwat Prasad
{"title":"细胞色素P450 4A11的新型萘基荧光底物。","authors":"Dmitri R Davydov, Kannapiran Ponraj, Nadezhda Davydova, Dilip Kumar Singh, Bhagwat Prasad","doi":"10.1042/BCJ20253130","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to create a high-throughput fluorimetric assay for the activity of CYP4A11, the major 20-HETE-producing enzyme. To this end, we probed 3-(6-methoxynaphthalen-2-yl)acrylic acid (MONACRA) as a potential CYP4A11 substrate. We studied its metabolism using human liver microsomes (HLM) and recombinant P450 enzymes. O-demethylation of MONACRA by cytochromes P450 creates 3-(6-hydroxynaphthalen-2-yl)acrylic acid. The bright fluorescence of the product and its clear spectral resolution from the substrate allowed us to create a fluorimetric assay of MONACRA metabolism. We tested 16 recombinant human P450 enzymes and found noticeable demethylation activity only with CYP4A11 and CYP1A2. The KM for CYP4A11 is 189±37 μM, and the kcat accounts for 67±18 min-1. CYP1A2 exhibits a KM of 161±34 μM, with a kcat value of 44±6 min-1, although this enzyme also exhibited a decreased rate of turnover at high substrate concentrations, evidencing substrate inhibition with Ksi=650±200 μM. The studies with fluvoxamine and epalrestat, specific inhibitors of CYP1A2 and CYP4A11, respectively, showed that despite the activity of recombinant CYP1A2 with MONACRA, it does not take part in its metabolism in HLM. Thus, MONACRA can be utilized as a specific fluorogenic substrate of CYP4A11. We developed a robust and sensitive automated fluorimetric assay of MONACRA demethylation and used it to compare the substrate saturation profiles in seven pooled HLM preparations with the known composition of the P450 pool. These studies demonstrated a close correlation between the rate of the main kinetic phase of MONACRA metabolism and the fractional content of CYP4A11 in the P450 pool.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new naphthalene-based fluorogenic substrate for cytochrome P450 4A11.\",\"authors\":\"Dmitri R Davydov, Kannapiran Ponraj, Nadezhda Davydova, Dilip Kumar Singh, Bhagwat Prasad\",\"doi\":\"10.1042/BCJ20253130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to create a high-throughput fluorimetric assay for the activity of CYP4A11, the major 20-HETE-producing enzyme. To this end, we probed 3-(6-methoxynaphthalen-2-yl)acrylic acid (MONACRA) as a potential CYP4A11 substrate. We studied its metabolism using human liver microsomes (HLM) and recombinant P450 enzymes. O-demethylation of MONACRA by cytochromes P450 creates 3-(6-hydroxynaphthalen-2-yl)acrylic acid. The bright fluorescence of the product and its clear spectral resolution from the substrate allowed us to create a fluorimetric assay of MONACRA metabolism. We tested 16 recombinant human P450 enzymes and found noticeable demethylation activity only with CYP4A11 and CYP1A2. The KM for CYP4A11 is 189±37 μM, and the kcat accounts for 67±18 min-1. CYP1A2 exhibits a KM of 161±34 μM, with a kcat value of 44±6 min-1, although this enzyme also exhibited a decreased rate of turnover at high substrate concentrations, evidencing substrate inhibition with Ksi=650±200 μM. The studies with fluvoxamine and epalrestat, specific inhibitors of CYP1A2 and CYP4A11, respectively, showed that despite the activity of recombinant CYP1A2 with MONACRA, it does not take part in its metabolism in HLM. Thus, MONACRA can be utilized as a specific fluorogenic substrate of CYP4A11. We developed a robust and sensitive automated fluorimetric assay of MONACRA demethylation and used it to compare the substrate saturation profiles in seven pooled HLM preparations with the known composition of the P450 pool. These studies demonstrated a close correlation between the rate of the main kinetic phase of MONACRA metabolism and the fractional content of CYP4A11 in the P450 pool.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20253130\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253130","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是创建一种高通量荧光法测定CYP4A11(主要的20- hete产生酶)的活性。为此,我们探索了3-(6-甲氧基萘-2-基)丙烯酸(MONACRA)作为潜在的CYP4A11底物。我们利用人肝微粒体(HLM)和重组P450酶研究其代谢。细胞色素P450对MONACRA的o -去甲基化产生3-(6-羟基萘-2-基)丙烯酸。该产品的明亮荧光及其清晰的底物光谱分辨率使我们能够创建MONACRA代谢的荧光测定。我们测试了16种重组人P450酶,发现只有CYP4A11和CYP1A2具有明显的去甲基化活性。CYP4A11的KM为189±37µM, kcat为67±18 min-1。CYP1A2的KM为161±34µM, kcat值为44±6 min-1,尽管该酶在高底物浓度下也表现出周转减少,证明底物抑制Ksi=650±200µM。对CYP1A2和CYP4A11特异性抑制剂氟伏沙明和依帕司他的研究表明,尽管重组CYP1A2与MONACRA有活性,但它不参与其在HLM中的代谢。因此,MONACRA可以作为CYP4A11的特异性荧光底物。我们开发了一种强大而敏感的MONACRA去甲基化自动荧光分析方法,并用它来比较七种混合HLM制剂与已知P450池组成的底物饱和度曲线(SSP)。这些研究表明,MONACRA代谢的主要动力学相与P450池中CYP4A11的分数含量密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new naphthalene-based fluorogenic substrate for cytochrome P450 4A11.

We aimed to create a high-throughput fluorimetric assay for the activity of CYP4A11, the major 20-HETE-producing enzyme. To this end, we probed 3-(6-methoxynaphthalen-2-yl)acrylic acid (MONACRA) as a potential CYP4A11 substrate. We studied its metabolism using human liver microsomes (HLM) and recombinant P450 enzymes. O-demethylation of MONACRA by cytochromes P450 creates 3-(6-hydroxynaphthalen-2-yl)acrylic acid. The bright fluorescence of the product and its clear spectral resolution from the substrate allowed us to create a fluorimetric assay of MONACRA metabolism. We tested 16 recombinant human P450 enzymes and found noticeable demethylation activity only with CYP4A11 and CYP1A2. The KM for CYP4A11 is 189±37 μM, and the kcat accounts for 67±18 min-1. CYP1A2 exhibits a KM of 161±34 μM, with a kcat value of 44±6 min-1, although this enzyme also exhibited a decreased rate of turnover at high substrate concentrations, evidencing substrate inhibition with Ksi=650±200 μM. The studies with fluvoxamine and epalrestat, specific inhibitors of CYP1A2 and CYP4A11, respectively, showed that despite the activity of recombinant CYP1A2 with MONACRA, it does not take part in its metabolism in HLM. Thus, MONACRA can be utilized as a specific fluorogenic substrate of CYP4A11. We developed a robust and sensitive automated fluorimetric assay of MONACRA demethylation and used it to compare the substrate saturation profiles in seven pooled HLM preparations with the known composition of the P450 pool. These studies demonstrated a close correlation between the rate of the main kinetic phase of MONACRA metabolism and the fractional content of CYP4A11 in the P450 pool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信