ENaC参与囊性纤维化中巨噬细胞功能障碍。

IF 3.6 2区 医学 Q1 PHYSIOLOGY
John Moran, Courtney Pugh, Nevian Brown, Ashley Thomas, Shuzhong Zhang, Emily McCauley, Amelia Cephas, Chandra L Shrestha, Santiago Partida-Sanchez, Shasha Bai, Emanuela Bruscia, Benjamin T Kopp
{"title":"ENaC参与囊性纤维化中巨噬细胞功能障碍。","authors":"John Moran, Courtney Pugh, Nevian Brown, Ashley Thomas, Shuzhong Zhang, Emily McCauley, Amelia Cephas, Chandra L Shrestha, Santiago Partida-Sanchez, Shasha Bai, Emanuela Bruscia, Benjamin T Kopp","doi":"10.1152/ajplung.00009.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a chronic disease caused by dysfunctional or absent cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is expressed in immune cells and regulates innate immunity, both directly and indirectly. The epithelial sodium channel (ENaC) contributes to dysfunction in CF airway epithelial cells. However, the impact of non-CFTR ion channel dysfunction on CF immune responses is not understood. Improved understanding of how immune function is regulated by ion channels may allow antibiotic- and mutation-agnostic treatment approaches to chronic infection and inflammation. Therefore, we hypothesized that ENaC is aberrantly expressed in CF macrophages and directly contributes to impaired phagocytic and inflammatory functions. ENaC expression was characterized in immune cells isolated from CF and non-CF blood donors. Monocyte-derived macrophage (MDM) function and bacterial killing were tested with ENaC modulation. Baseline ENaC expression in human CF MDMs, lymphocytes, and granulocytes was increased at both the transcript and protein level relative to non-CF and persisted after infection. CFTR inhibition in non-CF MDMs resulted in ENaC overexpression. CFTR modulator treatment reduced but did not eliminate ENaC overexpression in CF MDMs. Interestingly, ENaC inhibition increased CFTR expression. Amiloride-treated CF MDMs also showed normalized reactive oxygen species (ROS) production, improved autophagy, and decreased proinflammatory cytokine production. Sodium channel expression in CF MDMs normalized after amiloride treatment with minimal effect on other ion channels. In summary, ENaC modulation in immune cells is a novel potential therapeutic target for CF infection control, either in combination with CFTR modulators, or as a sole agent for people not eligible for CFTR modulators.<b>NEW & NOTEWORTHY</b> New research reveals that epithelial sodium channel (ENaC) overexpression in cystic fibrosis (CF) immune cells impairs macrophage function. Inhibiting ENaC increases cystic fibrosis transmembrane conductance regulator (CFTR) expression, normalizes reactive oxygen species production, improves autophagy, and reduces proinflammatory cytokine production. This suggests that ENaC modulation could be a novel therapeutic target for CF infection control, either alone or with CFTR modulators, offering new hope for patients not eligible for current treatments.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L61-L69"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181047/pdf/","citationCount":"0","resultStr":"{\"title\":\"ENaC contributes to macrophage dysfunction in cystic fibrosis.\",\"authors\":\"John Moran, Courtney Pugh, Nevian Brown, Ashley Thomas, Shuzhong Zhang, Emily McCauley, Amelia Cephas, Chandra L Shrestha, Santiago Partida-Sanchez, Shasha Bai, Emanuela Bruscia, Benjamin T Kopp\",\"doi\":\"10.1152/ajplung.00009.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystic fibrosis (CF) is a chronic disease caused by dysfunctional or absent cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is expressed in immune cells and regulates innate immunity, both directly and indirectly. The epithelial sodium channel (ENaC) contributes to dysfunction in CF airway epithelial cells. However, the impact of non-CFTR ion channel dysfunction on CF immune responses is not understood. Improved understanding of how immune function is regulated by ion channels may allow antibiotic- and mutation-agnostic treatment approaches to chronic infection and inflammation. Therefore, we hypothesized that ENaC is aberrantly expressed in CF macrophages and directly contributes to impaired phagocytic and inflammatory functions. ENaC expression was characterized in immune cells isolated from CF and non-CF blood donors. Monocyte-derived macrophage (MDM) function and bacterial killing were tested with ENaC modulation. Baseline ENaC expression in human CF MDMs, lymphocytes, and granulocytes was increased at both the transcript and protein level relative to non-CF and persisted after infection. CFTR inhibition in non-CF MDMs resulted in ENaC overexpression. CFTR modulator treatment reduced but did not eliminate ENaC overexpression in CF MDMs. Interestingly, ENaC inhibition increased CFTR expression. Amiloride-treated CF MDMs also showed normalized reactive oxygen species (ROS) production, improved autophagy, and decreased proinflammatory cytokine production. Sodium channel expression in CF MDMs normalized after amiloride treatment with minimal effect on other ion channels. In summary, ENaC modulation in immune cells is a novel potential therapeutic target for CF infection control, either in combination with CFTR modulators, or as a sole agent for people not eligible for CFTR modulators.<b>NEW & NOTEWORTHY</b> New research reveals that epithelial sodium channel (ENaC) overexpression in cystic fibrosis (CF) immune cells impairs macrophage function. Inhibiting ENaC increases cystic fibrosis transmembrane conductance regulator (CFTR) expression, normalizes reactive oxygen species production, improves autophagy, and reduces proinflammatory cytokine production. This suggests that ENaC modulation could be a novel therapeutic target for CF infection control, either alone or with CFTR modulators, offering new hope for patients not eligible for current treatments.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L61-L69\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00009.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00009.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

囊性纤维化(CF)是一种由囊性纤维化跨膜传导调节因子(CFTR)功能失调或缺失引起的慢性疾病。CFTR在免疫细胞中表达,直接或间接调节先天免疫。上皮钠通道(ENaC)参与CF气道上皮细胞功能障碍。然而,非cftr离子通道功能障碍对CF免疫反应的影响尚不清楚。提高对免疫功能如何受离子通道调节的理解,可能使抗生素和突变不可知论治疗慢性感染和炎症的方法成为可能。因此,我们假设ENaC在CF巨噬细胞中异常表达,并直接导致吞噬和炎症功能受损。ENaC在CF和非CF献血者分离的免疫细胞中表达。用ENaC调制法检测单核细胞源性巨噬细胞(MDM)功能和细菌杀灭情况。与非CF相比,人CF MDMs、淋巴细胞和粒细胞的基线ENaC表达在转录物和蛋白水平上都有所增加,并且在感染后持续存在。非cf MDMs中CFTR抑制导致ENaC过表达。CFTR调节剂治疗减少但没有消除CF MDMs中ENaC的过表达。有趣的是,ENaC抑制增加了CFTR的表达。阿米洛利处理的CF MDMs也显示出ROS生成正常化,自噬改善,促炎细胞因子产生减少。阿米洛利治疗后,CF MDMs中钠离子通道表达正常化,对其他离子通道影响最小。综上所述,免疫细胞中的ENaC调节是CF感染控制的一个新的潜在治疗靶点,无论是与CFTR调节剂联合使用,还是作为不符合CFTR调节剂资格的人的单独药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENaC contributes to macrophage dysfunction in cystic fibrosis.

Cystic fibrosis (CF) is a chronic disease caused by dysfunctional or absent cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is expressed in immune cells and regulates innate immunity, both directly and indirectly. The epithelial sodium channel (ENaC) contributes to dysfunction in CF airway epithelial cells. However, the impact of non-CFTR ion channel dysfunction on CF immune responses is not understood. Improved understanding of how immune function is regulated by ion channels may allow antibiotic- and mutation-agnostic treatment approaches to chronic infection and inflammation. Therefore, we hypothesized that ENaC is aberrantly expressed in CF macrophages and directly contributes to impaired phagocytic and inflammatory functions. ENaC expression was characterized in immune cells isolated from CF and non-CF blood donors. Monocyte-derived macrophage (MDM) function and bacterial killing were tested with ENaC modulation. Baseline ENaC expression in human CF MDMs, lymphocytes, and granulocytes was increased at both the transcript and protein level relative to non-CF and persisted after infection. CFTR inhibition in non-CF MDMs resulted in ENaC overexpression. CFTR modulator treatment reduced but did not eliminate ENaC overexpression in CF MDMs. Interestingly, ENaC inhibition increased CFTR expression. Amiloride-treated CF MDMs also showed normalized reactive oxygen species (ROS) production, improved autophagy, and decreased proinflammatory cytokine production. Sodium channel expression in CF MDMs normalized after amiloride treatment with minimal effect on other ion channels. In summary, ENaC modulation in immune cells is a novel potential therapeutic target for CF infection control, either in combination with CFTR modulators, or as a sole agent for people not eligible for CFTR modulators.NEW & NOTEWORTHY New research reveals that epithelial sodium channel (ENaC) overexpression in cystic fibrosis (CF) immune cells impairs macrophage function. Inhibiting ENaC increases cystic fibrosis transmembrane conductance regulator (CFTR) expression, normalizes reactive oxygen species production, improves autophagy, and reduces proinflammatory cytokine production. This suggests that ENaC modulation could be a novel therapeutic target for CF infection control, either alone or with CFTR modulators, offering new hope for patients not eligible for current treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信