基于遗传算法的异构网络云雾协同计算卸载与资源分配

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiang Wang, Chenming Zhu, Su Pan, Min Zhong, Zibo Li
{"title":"基于遗传算法的异构网络云雾协同计算卸载与资源分配","authors":"Qiang Wang,&nbsp;Chenming Zhu,&nbsp;Su Pan,&nbsp;Min Zhong,&nbsp;Zibo Li","doi":"10.1049/cmu2.70051","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the computation offloading and resource allocation strategy of the coexistence and synergy between fog computing and cloud computing in heterogeneous networks. Consider that the reported schemes have prohibitive complexity when achieving the optimal computation offloading strategy in cloud-fog cooperative heterogeneous networks, an improved genetic algorithm (IGA) is proposed in this paper, which can maintain a low computation complexity while obtaining the optimal solution. In the IGA algorithm, we propose to use a penalty function to express the constraint conditions of the optimisation problem and use a non-uniform mutation operator to accelerate the convergence speed. Besides, an improved method of parameter self-adaptation and a perturbation method of mutation probability based on population fitness standard deviation are proposed to optimise the genetic algorithm. The numerical results show that the proposed genetic algorithm can obtain a lower average cost of the system while keeping a smaller computational cost.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70051","citationCount":"0","resultStr":"{\"title\":\"Cloud-Fog Cooperative Computation Offloading and Resource Allocation in Heterogeneous Networks Based on Genetic Algorithm\",\"authors\":\"Qiang Wang,&nbsp;Chenming Zhu,&nbsp;Su Pan,&nbsp;Min Zhong,&nbsp;Zibo Li\",\"doi\":\"10.1049/cmu2.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the computation offloading and resource allocation strategy of the coexistence and synergy between fog computing and cloud computing in heterogeneous networks. Consider that the reported schemes have prohibitive complexity when achieving the optimal computation offloading strategy in cloud-fog cooperative heterogeneous networks, an improved genetic algorithm (IGA) is proposed in this paper, which can maintain a low computation complexity while obtaining the optimal solution. In the IGA algorithm, we propose to use a penalty function to express the constraint conditions of the optimisation problem and use a non-uniform mutation operator to accelerate the convergence speed. Besides, an improved method of parameter self-adaptation and a perturbation method of mutation probability based on population fitness standard deviation are proposed to optimise the genetic algorithm. The numerical results show that the proposed genetic algorithm can obtain a lower average cost of the system while keeping a smaller computational cost.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70051\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了异构网络中雾计算与云计算共存与协同的计算卸载和资源分配策略。针对现有方案在云雾协同异构网络中实现最优计算卸载策略时过于复杂的问题,本文提出了一种改进的遗传算法(IGA),该算法在获得最优解的同时保持较低的计算复杂度。在IGA算法中,我们提出使用罚函数来表示优化问题的约束条件,并使用非一致变异算子来加快收敛速度。此外,提出了一种改进的参数自适应方法和基于种群适应度标准差的突变概率摄动方法对遗传算法进行优化。数值结果表明,所提出的遗传算法可以在保持较小的计算代价的同时获得较低的系统平均代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-Fog Cooperative Computation Offloading and Resource Allocation in Heterogeneous Networks Based on Genetic Algorithm

In this paper, we investigate the computation offloading and resource allocation strategy of the coexistence and synergy between fog computing and cloud computing in heterogeneous networks. Consider that the reported schemes have prohibitive complexity when achieving the optimal computation offloading strategy in cloud-fog cooperative heterogeneous networks, an improved genetic algorithm (IGA) is proposed in this paper, which can maintain a low computation complexity while obtaining the optimal solution. In the IGA algorithm, we propose to use a penalty function to express the constraint conditions of the optimisation problem and use a non-uniform mutation operator to accelerate the convergence speed. Besides, an improved method of parameter self-adaptation and a perturbation method of mutation probability based on population fitness standard deviation are proposed to optimise the genetic algorithm. The numerical results show that the proposed genetic algorithm can obtain a lower average cost of the system while keeping a smaller computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信