{"title":"AMCF-Net:一种用于胸部ct肺结节计算机辅助诊断的新型自适应多通道融合网络","authors":"Nan Wang, Yu Gu, Lidong Yang, Baohua Zhang, Jing Wang, Xiaoqi Lu, Jianjun Li, Dahua Yu, Ying Zhao, Xin Liu, Siyuan Tang, Qun He","doi":"10.1049/cmu2.70052","DOIUrl":null,"url":null,"abstract":"<p>Malignant lung nodules can significantly affect patients' normal lives and, in severe cases, threaten their survival. Owing to the heterogeneity of computed tomography scans and the varying sizes of nodules, physicians often face challenges in diagnosing this condition. Therefore, a novel adaptive multi-channel fusion network (AMCF-Net) is proposed for computer-aided diagnosis of lung nodules. First, a Multi-Channel Fusion Model module is designed, which divides the channels into two parts in specific proportions, effectively extracting multi-scale channel information while reducing network parameters. After the feature maps output at each layer of the AMCF-Net, a novel adaptive depth-wise separable convolution with a squeeze-and-excitation module is designed to adaptively integrate the feature maps of various stages of the AMCF-Net, ensuring that the key lesions of lung nodules are not lost during classification. Finally, a hybrid loss scheme based on an adaptive mixing ratio is proposed to solve the problem of an imbalanced number of positive and negative nodule samples in the dataset. The model achieved the following test results: an accuracy of 90.22%, a specificity of 98.19%, an F1-score of 86.57%, a sensitivity of 86.49%, and a G-mean of 87.72%. Compared with other advanced networks, AMCF-net delivers high-precision lung nodule classification with minimal inference cost. Related codes have been released at: https://github.com/GuYuIMUST/AMCF-net.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70052","citationCount":"0","resultStr":"{\"title\":\"AMCF-Net: A Novel Adaptive Multi-Channel Fusion Network for Computer-Aided Diagnosis of Lung Nodules in Chest Computed Tomography\",\"authors\":\"Nan Wang, Yu Gu, Lidong Yang, Baohua Zhang, Jing Wang, Xiaoqi Lu, Jianjun Li, Dahua Yu, Ying Zhao, Xin Liu, Siyuan Tang, Qun He\",\"doi\":\"10.1049/cmu2.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Malignant lung nodules can significantly affect patients' normal lives and, in severe cases, threaten their survival. Owing to the heterogeneity of computed tomography scans and the varying sizes of nodules, physicians often face challenges in diagnosing this condition. Therefore, a novel adaptive multi-channel fusion network (AMCF-Net) is proposed for computer-aided diagnosis of lung nodules. First, a Multi-Channel Fusion Model module is designed, which divides the channels into two parts in specific proportions, effectively extracting multi-scale channel information while reducing network parameters. After the feature maps output at each layer of the AMCF-Net, a novel adaptive depth-wise separable convolution with a squeeze-and-excitation module is designed to adaptively integrate the feature maps of various stages of the AMCF-Net, ensuring that the key lesions of lung nodules are not lost during classification. Finally, a hybrid loss scheme based on an adaptive mixing ratio is proposed to solve the problem of an imbalanced number of positive and negative nodule samples in the dataset. The model achieved the following test results: an accuracy of 90.22%, a specificity of 98.19%, an F1-score of 86.57%, a sensitivity of 86.49%, and a G-mean of 87.72%. Compared with other advanced networks, AMCF-net delivers high-precision lung nodule classification with minimal inference cost. Related codes have been released at: https://github.com/GuYuIMUST/AMCF-net.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70052\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70052","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
AMCF-Net: A Novel Adaptive Multi-Channel Fusion Network for Computer-Aided Diagnosis of Lung Nodules in Chest Computed Tomography
Malignant lung nodules can significantly affect patients' normal lives and, in severe cases, threaten their survival. Owing to the heterogeneity of computed tomography scans and the varying sizes of nodules, physicians often face challenges in diagnosing this condition. Therefore, a novel adaptive multi-channel fusion network (AMCF-Net) is proposed for computer-aided diagnosis of lung nodules. First, a Multi-Channel Fusion Model module is designed, which divides the channels into two parts in specific proportions, effectively extracting multi-scale channel information while reducing network parameters. After the feature maps output at each layer of the AMCF-Net, a novel adaptive depth-wise separable convolution with a squeeze-and-excitation module is designed to adaptively integrate the feature maps of various stages of the AMCF-Net, ensuring that the key lesions of lung nodules are not lost during classification. Finally, a hybrid loss scheme based on an adaptive mixing ratio is proposed to solve the problem of an imbalanced number of positive and negative nodule samples in the dataset. The model achieved the following test results: an accuracy of 90.22%, a specificity of 98.19%, an F1-score of 86.57%, a sensitivity of 86.49%, and a G-mean of 87.72%. Compared with other advanced networks, AMCF-net delivers high-precision lung nodule classification with minimal inference cost. Related codes have been released at: https://github.com/GuYuIMUST/AMCF-net.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf