概率神经网络在光学复杂水域吸收特性高光谱遥感中的泛化能力研究

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Mortimer Werther , Olivier Burggraaff , Daniela Gurlin , Arun M. Saranathan , Sundarabalan V. Balasubramanian , Claudia Giardino , Federica Braga , Mariano Bresciani , Andrea Pellegrino , Monica Pinardi , Stefan G.H. Simis , Moritz K. Lehmann , Kersti Kangro , Krista Alikas , Dariusz Ficek , Daniel Odermatt
{"title":"概率神经网络在光学复杂水域吸收特性高光谱遥感中的泛化能力研究","authors":"Mortimer Werther ,&nbsp;Olivier Burggraaff ,&nbsp;Daniela Gurlin ,&nbsp;Arun M. Saranathan ,&nbsp;Sundarabalan V. Balasubramanian ,&nbsp;Claudia Giardino ,&nbsp;Federica Braga ,&nbsp;Mariano Bresciani ,&nbsp;Andrea Pellegrino ,&nbsp;Monica Pinardi ,&nbsp;Stefan G.H. Simis ,&nbsp;Moritz K. Lehmann ,&nbsp;Kersti Kangro ,&nbsp;Krista Alikas ,&nbsp;Dariusz Ficek ,&nbsp;Daniel Odermatt","doi":"10.1016/j.rse.2025.114820","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning models have steadily improved in estimating inherent optical properties (IOPs) from remote sensing observations. Yet, their generalization ability when applied to new water bodies, beyond those they were trained on, is not well understood. We present a novel approach for assessing model generalization across various scenarios, including interpolation within <em>in situ</em> observation datasets, extrapolation beyond the training scope, and application to hyperspectral observations from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite involving atmospheric correction. We evaluate five probabilistic neural networks (PNNs), including novel architectures like recurrent neural networks, for their ability to estimate absorption at 443 and 675 nm from hyperspectral reflectance. The median symmetric accuracy (MdSA) worsens from <span><math><mo>≥</mo></math></span>25% in interpolation scenarios to <span><math><mo>≥</mo></math></span>50% in extrapolation scenarios, and reaches <span><math><mo>≥</mo></math></span>80% when applied to PRISMA satellite imagery. Across all scenarios, models produce uncertainty estimates exceeding 40%, often reflecting systematic underconfidence. PNNs show better calibration during extrapolation, suggesting an intrinsic awareness of retrieval constraints. To address this miscalibration, we introduce an uncertainty recalibration method that only withholds 10% of the training dataset, but improves model calibration in 86% of PRISMA evaluations with minimal accuracy trade-offs. Resulting well-calibrated uncertainty estimates enable reliable uncertainty propagation for downstream applications. IOP retrieval uncertainty is predominantly aleatoric (inherent to the observations). Therefore, increasing the number of measurements from the same distribution or selecting a different neural network architecture trained on the same dataset does not enhance model accuracy. Our findings indicate that we have reached a predictability limit in retrieving IOPs using purely data-driven approaches. We therefore advocate embedding physical principles of IOPs into model architectures, creating physics-informed neural networks capable of surpassing current limitations.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114820"},"PeriodicalIF":11.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the generalization ability of probabilistic neural networks for hyperspectral remote sensing of absorption properties across optically complex waters\",\"authors\":\"Mortimer Werther ,&nbsp;Olivier Burggraaff ,&nbsp;Daniela Gurlin ,&nbsp;Arun M. Saranathan ,&nbsp;Sundarabalan V. Balasubramanian ,&nbsp;Claudia Giardino ,&nbsp;Federica Braga ,&nbsp;Mariano Bresciani ,&nbsp;Andrea Pellegrino ,&nbsp;Monica Pinardi ,&nbsp;Stefan G.H. Simis ,&nbsp;Moritz K. Lehmann ,&nbsp;Kersti Kangro ,&nbsp;Krista Alikas ,&nbsp;Dariusz Ficek ,&nbsp;Daniel Odermatt\",\"doi\":\"10.1016/j.rse.2025.114820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning models have steadily improved in estimating inherent optical properties (IOPs) from remote sensing observations. Yet, their generalization ability when applied to new water bodies, beyond those they were trained on, is not well understood. We present a novel approach for assessing model generalization across various scenarios, including interpolation within <em>in situ</em> observation datasets, extrapolation beyond the training scope, and application to hyperspectral observations from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite involving atmospheric correction. We evaluate five probabilistic neural networks (PNNs), including novel architectures like recurrent neural networks, for their ability to estimate absorption at 443 and 675 nm from hyperspectral reflectance. The median symmetric accuracy (MdSA) worsens from <span><math><mo>≥</mo></math></span>25% in interpolation scenarios to <span><math><mo>≥</mo></math></span>50% in extrapolation scenarios, and reaches <span><math><mo>≥</mo></math></span>80% when applied to PRISMA satellite imagery. Across all scenarios, models produce uncertainty estimates exceeding 40%, often reflecting systematic underconfidence. PNNs show better calibration during extrapolation, suggesting an intrinsic awareness of retrieval constraints. To address this miscalibration, we introduce an uncertainty recalibration method that only withholds 10% of the training dataset, but improves model calibration in 86% of PRISMA evaluations with minimal accuracy trade-offs. Resulting well-calibrated uncertainty estimates enable reliable uncertainty propagation for downstream applications. IOP retrieval uncertainty is predominantly aleatoric (inherent to the observations). Therefore, increasing the number of measurements from the same distribution or selecting a different neural network architecture trained on the same dataset does not enhance model accuracy. Our findings indicate that we have reached a predictability limit in retrieving IOPs using purely data-driven approaches. We therefore advocate embedding physical principles of IOPs into model architectures, creating physics-informed neural networks capable of surpassing current limitations.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"328 \",\"pages\":\"Article 114820\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003442572500224X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572500224X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机器学习模型在从遥感观测估计固有光学特性(IOPs)方面稳步改进。然而,他们的泛化能力,当应用到新的水体,超出了他们的训练,不是很清楚。我们提出了一种新的方法来评估模型在各种情况下的泛化,包括在原位观测数据集内的插值,在训练范围之外的外推,以及应用于precursoiperspettrale della missioneapplicativa (PRISMA)卫星涉及大气校正的高光谱观测。我们评估了五种概率神经网络(pnn),包括像循环神经网络这样的新架构,以评估它们从高光谱反射率中估计443和675 nm吸收的能力。中位对称精度(MdSA)从插值场景的≥25%下降到外推场景的≥50%,而在PRISMA卫星图像中达到≥80%。在所有情景中,模型产生的不确定性估计超过40%,通常反映出系统性的信心不足。pnn在外推过程中表现出更好的校准,表明其对检索约束的内在意识。为了解决这种校准错误,我们引入了一种不确定度再校准方法,该方法只保留了10%的训练数据集,但在86%的PRISMA评估中以最小的精度折衷提高了模型校准。由此产生的校准良好的不确定性估计可以为下游应用提供可靠的不确定性传播。眼压恢复的不确定性主要是任意的(固有的观察)。因此,增加来自相同分布的测量数量或选择在相同数据集上训练的不同神经网络架构并不能提高模型的准确性。我们的研究结果表明,我们已经达到了使用纯数据驱动方法检索IOPs的可预测性限制。因此,我们提倡将IOPs的物理原理嵌入到模型架构中,创建能够超越当前限制的物理信息神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the generalization ability of probabilistic neural networks for hyperspectral remote sensing of absorption properties across optically complex waters
Machine learning models have steadily improved in estimating inherent optical properties (IOPs) from remote sensing observations. Yet, their generalization ability when applied to new water bodies, beyond those they were trained on, is not well understood. We present a novel approach for assessing model generalization across various scenarios, including interpolation within in situ observation datasets, extrapolation beyond the training scope, and application to hyperspectral observations from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite involving atmospheric correction. We evaluate five probabilistic neural networks (PNNs), including novel architectures like recurrent neural networks, for their ability to estimate absorption at 443 and 675 nm from hyperspectral reflectance. The median symmetric accuracy (MdSA) worsens from 25% in interpolation scenarios to 50% in extrapolation scenarios, and reaches 80% when applied to PRISMA satellite imagery. Across all scenarios, models produce uncertainty estimates exceeding 40%, often reflecting systematic underconfidence. PNNs show better calibration during extrapolation, suggesting an intrinsic awareness of retrieval constraints. To address this miscalibration, we introduce an uncertainty recalibration method that only withholds 10% of the training dataset, but improves model calibration in 86% of PRISMA evaluations with minimal accuracy trade-offs. Resulting well-calibrated uncertainty estimates enable reliable uncertainty propagation for downstream applications. IOP retrieval uncertainty is predominantly aleatoric (inherent to the observations). Therefore, increasing the number of measurements from the same distribution or selecting a different neural network architecture trained on the same dataset does not enhance model accuracy. Our findings indicate that we have reached a predictability limit in retrieving IOPs using purely data-driven approaches. We therefore advocate embedding physical principles of IOPs into model architectures, creating physics-informed neural networks capable of surpassing current limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信