Zheng Xiao , Yucheng Pan , Hong Meng , Zongze Qu , Liang Guo , Bin Kong , Wei Shuai , He Huang
{"title":"泛素特异性蛋白酶38通过ACAD11的翻译后修饰加重糖尿病心肌病","authors":"Zheng Xiao , Yucheng Pan , Hong Meng , Zongze Qu , Liang Guo , Bin Kong , Wei Shuai , He Huang","doi":"10.1016/j.redox.2025.103704","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diabetic cardiomyopathy (DCM) is a prevalent and severe complication of diabetes, for which effective management strategies remain limited. Ubiquitin-specific protease 38 (USP38) has been associated with various cardiovascular diseases. In this study, we investigate the role of USP38 in the pathogenesis of DCM.</div></div><div><h3>Methods</h3><div>Cardiomyocyte-specific transgenic and knockout USP38 mice were generated, and diabetic mouse model was established using streptozotocin injections. Neonatal rat cardiomyocytes exposed to high glucose conditions were utilized for in vitro experiments. Cardiac remodeling was assessed through echocardiography, electrophysiological analysis, histological assessment, and molecular analysis.</div></div><div><h3>Results</h3><div>USP38 expression was significantly upregulated in DCM. Cardiomyocyte-specific USP38 overexpression aggravated cardiac dysfunction, cardiac inflammation and myocardial fibrosis, mitochondrial dysfunction, and increased vulnerability to ventricular arrhythmia in diabetic mice. Conversely, cardiomyocyte-specific USP38 deletion improved cardiac structural and electrical remodeling and attenuated mitochondrial impairment. Similar results were observed in vitro. Mechanistically, RNA-sequencing analysis, immunoprecipitation and mass spectrometry analysis and lipidomic analysis demonstrated that USP38 directly interacts with Acy-CoA dehydrogenase (ACAD11), deubiquitinating and inactivating it. This leads to abnormal fatty acid oxidation and subsequent activation of the receptor for advanced glycation end products (RAGE) pathway in diabetic heart. Pharmacological inhibition of RAGE using FPS-ZM1 hampered cardiac remodeling and dysfunction in cardiomyocyte-specific USP38 overexpressing diabetic mice.</div></div><div><h3>Conclusion</h3><div>The study demonstrates that USP38 exacerbates diabetes-induced cardiac remodeling and DCM via post-translational modification of ACAD11, highlighting a novel therapeutic target for DCM.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"84 ","pages":"Article 103704"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin-specific protease 38 exacerbates diabetic cardiomyopathy via post-translational modification of ACAD11\",\"authors\":\"Zheng Xiao , Yucheng Pan , Hong Meng , Zongze Qu , Liang Guo , Bin Kong , Wei Shuai , He Huang\",\"doi\":\"10.1016/j.redox.2025.103704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Diabetic cardiomyopathy (DCM) is a prevalent and severe complication of diabetes, for which effective management strategies remain limited. Ubiquitin-specific protease 38 (USP38) has been associated with various cardiovascular diseases. In this study, we investigate the role of USP38 in the pathogenesis of DCM.</div></div><div><h3>Methods</h3><div>Cardiomyocyte-specific transgenic and knockout USP38 mice were generated, and diabetic mouse model was established using streptozotocin injections. Neonatal rat cardiomyocytes exposed to high glucose conditions were utilized for in vitro experiments. Cardiac remodeling was assessed through echocardiography, electrophysiological analysis, histological assessment, and molecular analysis.</div></div><div><h3>Results</h3><div>USP38 expression was significantly upregulated in DCM. Cardiomyocyte-specific USP38 overexpression aggravated cardiac dysfunction, cardiac inflammation and myocardial fibrosis, mitochondrial dysfunction, and increased vulnerability to ventricular arrhythmia in diabetic mice. Conversely, cardiomyocyte-specific USP38 deletion improved cardiac structural and electrical remodeling and attenuated mitochondrial impairment. Similar results were observed in vitro. Mechanistically, RNA-sequencing analysis, immunoprecipitation and mass spectrometry analysis and lipidomic analysis demonstrated that USP38 directly interacts with Acy-CoA dehydrogenase (ACAD11), deubiquitinating and inactivating it. This leads to abnormal fatty acid oxidation and subsequent activation of the receptor for advanced glycation end products (RAGE) pathway in diabetic heart. Pharmacological inhibition of RAGE using FPS-ZM1 hampered cardiac remodeling and dysfunction in cardiomyocyte-specific USP38 overexpressing diabetic mice.</div></div><div><h3>Conclusion</h3><div>The study demonstrates that USP38 exacerbates diabetes-induced cardiac remodeling and DCM via post-translational modification of ACAD11, highlighting a novel therapeutic target for DCM.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"84 \",\"pages\":\"Article 103704\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725002174\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725002174","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ubiquitin-specific protease 38 exacerbates diabetic cardiomyopathy via post-translational modification of ACAD11
Background
Diabetic cardiomyopathy (DCM) is a prevalent and severe complication of diabetes, for which effective management strategies remain limited. Ubiquitin-specific protease 38 (USP38) has been associated with various cardiovascular diseases. In this study, we investigate the role of USP38 in the pathogenesis of DCM.
Methods
Cardiomyocyte-specific transgenic and knockout USP38 mice were generated, and diabetic mouse model was established using streptozotocin injections. Neonatal rat cardiomyocytes exposed to high glucose conditions were utilized for in vitro experiments. Cardiac remodeling was assessed through echocardiography, electrophysiological analysis, histological assessment, and molecular analysis.
Results
USP38 expression was significantly upregulated in DCM. Cardiomyocyte-specific USP38 overexpression aggravated cardiac dysfunction, cardiac inflammation and myocardial fibrosis, mitochondrial dysfunction, and increased vulnerability to ventricular arrhythmia in diabetic mice. Conversely, cardiomyocyte-specific USP38 deletion improved cardiac structural and electrical remodeling and attenuated mitochondrial impairment. Similar results were observed in vitro. Mechanistically, RNA-sequencing analysis, immunoprecipitation and mass spectrometry analysis and lipidomic analysis demonstrated that USP38 directly interacts with Acy-CoA dehydrogenase (ACAD11), deubiquitinating and inactivating it. This leads to abnormal fatty acid oxidation and subsequent activation of the receptor for advanced glycation end products (RAGE) pathway in diabetic heart. Pharmacological inhibition of RAGE using FPS-ZM1 hampered cardiac remodeling and dysfunction in cardiomyocyte-specific USP38 overexpressing diabetic mice.
Conclusion
The study demonstrates that USP38 exacerbates diabetes-induced cardiac remodeling and DCM via post-translational modification of ACAD11, highlighting a novel therapeutic target for DCM.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.