{"title":"多核架构下软件定义无线电流水线和复制任务链的优化调度算法","authors":"Diane Orhan , Laércio Lima Pilla , Denis Barthou , Adrien Cassagne , Olivier Aumage , Romain Tajan , Christophe Jégo , Camille Leroux","doi":"10.1016/j.jpdc.2025.105106","DOIUrl":null,"url":null,"abstract":"<div><div>Software-Defined Radio (SDR) represents a move from dedicated hardware to software implementations of digital communication standards. This approach offers flexibility, shorter time to market, maintainability, and lower costs, but it requires an optimized distribution tasks in order to meet performance requirements. Thus, we study the problem of scheduling SDR linear task chains of stateless and stateful tasks for streaming processing. We model this problem as a pipelined workflow scheduling problem based on pipelined and replicated parallelism on homogeneous resources. We propose an optimal dynamic programming solution and an optimal greedy algorithm named OTAC for maximizing throughput while also minimizing resource utilization. Moreover, the optimality of the proposed scheduling algorithm is proved. We evaluate our solutions and compare their execution times and schedules to other algorithms using synthetic task chains and an implementation of the DVB-S2 communication standard on the AFF3CT SDR Domain Specific Language. Our results demonstrate how OTAC quickly finds optimal schedules, leading consistently to better results than other algorithms, or equivalent results with fewer resources.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"204 ","pages":"Article 105106"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal scheduling algorithms for software-defined radio pipelined and replicated task chains on multicore architectures\",\"authors\":\"Diane Orhan , Laércio Lima Pilla , Denis Barthou , Adrien Cassagne , Olivier Aumage , Romain Tajan , Christophe Jégo , Camille Leroux\",\"doi\":\"10.1016/j.jpdc.2025.105106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Software-Defined Radio (SDR) represents a move from dedicated hardware to software implementations of digital communication standards. This approach offers flexibility, shorter time to market, maintainability, and lower costs, but it requires an optimized distribution tasks in order to meet performance requirements. Thus, we study the problem of scheduling SDR linear task chains of stateless and stateful tasks for streaming processing. We model this problem as a pipelined workflow scheduling problem based on pipelined and replicated parallelism on homogeneous resources. We propose an optimal dynamic programming solution and an optimal greedy algorithm named OTAC for maximizing throughput while also minimizing resource utilization. Moreover, the optimality of the proposed scheduling algorithm is proved. We evaluate our solutions and compare their execution times and schedules to other algorithms using synthetic task chains and an implementation of the DVB-S2 communication standard on the AFF3CT SDR Domain Specific Language. Our results demonstrate how OTAC quickly finds optimal schedules, leading consistently to better results than other algorithms, or equivalent results with fewer resources.</div></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"204 \",\"pages\":\"Article 105106\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731525000735\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000735","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Optimal scheduling algorithms for software-defined radio pipelined and replicated task chains on multicore architectures
Software-Defined Radio (SDR) represents a move from dedicated hardware to software implementations of digital communication standards. This approach offers flexibility, shorter time to market, maintainability, and lower costs, but it requires an optimized distribution tasks in order to meet performance requirements. Thus, we study the problem of scheduling SDR linear task chains of stateless and stateful tasks for streaming processing. We model this problem as a pipelined workflow scheduling problem based on pipelined and replicated parallelism on homogeneous resources. We propose an optimal dynamic programming solution and an optimal greedy algorithm named OTAC for maximizing throughput while also minimizing resource utilization. Moreover, the optimality of the proposed scheduling algorithm is proved. We evaluate our solutions and compare their execution times and schedules to other algorithms using synthetic task chains and an implementation of the DVB-S2 communication standard on the AFF3CT SDR Domain Specific Language. Our results demonstrate how OTAC quickly finds optimal schedules, leading consistently to better results than other algorithms, or equivalent results with fewer resources.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.