太阳能电池用CaTiO3和ZnTiO3体膜和薄膜的结构、光学、电子和热电性能的比较理论分析

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
D.S. Jayalakshmi , M. Devotine , Nachimuthu Venkatesh , Manavalan Rajesh Kumar , Govindhasamy Murugadoss
{"title":"太阳能电池用CaTiO3和ZnTiO3体膜和薄膜的结构、光学、电子和热电性能的比较理论分析","authors":"D.S. Jayalakshmi ,&nbsp;M. Devotine ,&nbsp;Nachimuthu Venkatesh ,&nbsp;Manavalan Rajesh Kumar ,&nbsp;Govindhasamy Murugadoss","doi":"10.1016/j.cocom.2025.e01070","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a first-principles investigation of CaTiO<sub>3</sub> and ZnTiO<sub>3</sub> in both bulk and novel bilayer (two-layered) phases, employing the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k simulation code. For the first time, we propose and optimize the bilayer structures derived from their respective bulk phases. Electronic properties, including band structures and density of states (DoS), are computed for both bulk and layered phases, showing good agreement with existing literature. A detailed analysis of optical properties reveals enhanced photon absorption and conductivity in the bilayer phases, making them superior candidates for solar cell applications compared to their bulk counterparts. Furthermore, we evaluate thermoelectric performance through the Seebeck coefficient (S), power factor (σS<sup>2</sup>), and figure of merit (zT), demonstrating improved energy conversion efficiency in the layered phases. The dynamic stability of the proposed bilayers is confirmed via formation energy calculations, Gibbs free energy analysis, phonon dispersion studies, and molecular dynamics simulations. Our comparative study highlights the potential of layered semiconducting perovskite (CaTiO<sub>3</sub>) and metallic perovskite (ZnTiO<sub>3</sub>) for next-generation optoelectronic and energy-harvesting technologies.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01070"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative theoretical analysis of structural, optical, electronic, and thermoelectric properties of bulk and thin films of CaTiO3 and ZnTiO3 for solar cell applications\",\"authors\":\"D.S. Jayalakshmi ,&nbsp;M. Devotine ,&nbsp;Nachimuthu Venkatesh ,&nbsp;Manavalan Rajesh Kumar ,&nbsp;Govindhasamy Murugadoss\",\"doi\":\"10.1016/j.cocom.2025.e01070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a first-principles investigation of CaTiO<sub>3</sub> and ZnTiO<sub>3</sub> in both bulk and novel bilayer (two-layered) phases, employing the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k simulation code. For the first time, we propose and optimize the bilayer structures derived from their respective bulk phases. Electronic properties, including band structures and density of states (DoS), are computed for both bulk and layered phases, showing good agreement with existing literature. A detailed analysis of optical properties reveals enhanced photon absorption and conductivity in the bilayer phases, making them superior candidates for solar cell applications compared to their bulk counterparts. Furthermore, we evaluate thermoelectric performance through the Seebeck coefficient (S), power factor (σS<sup>2</sup>), and figure of merit (zT), demonstrating improved energy conversion efficiency in the layered phases. The dynamic stability of the proposed bilayers is confirmed via formation energy calculations, Gibbs free energy analysis, phonon dispersion studies, and molecular dynamics simulations. Our comparative study highlights the potential of layered semiconducting perovskite (CaTiO<sub>3</sub>) and metallic perovskite (ZnTiO<sub>3</sub>) for next-generation optoelectronic and energy-harvesting technologies.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"44 \",\"pages\":\"Article e01070\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325000693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用WIEN2k模拟代码中实现的全势线性化增广平面波(FP-LAPW)方法,对CaTiO3和ZnTiO3在体相和新型双层相中的第一线原理进行了研究。我们首次提出并优化了由它们各自的体相衍生的双层结构。计算了体相和层状相的电子性质,包括能带结构和态密度(DoS),结果与现有文献一致。光学性质的详细分析表明,在双层相中增强的光子吸收和导电性,使其成为太阳能电池应用的优越候选者。此外,我们通过塞贝克系数(S)、功率因数(σS2)和优值图(zT)来评估热电性能,表明层状相的能量转换效率有所提高。通过地层能量计算、吉布斯自由能分析、声子色散研究和分子动力学模拟,证实了所提出的双层结构的动态稳定性。我们的比较研究强调了层状半导体钙钛矿(CaTiO3)和金属钙钛矿(ZnTiO3)在下一代光电和能量收集技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative theoretical analysis of structural, optical, electronic, and thermoelectric properties of bulk and thin films of CaTiO3 and ZnTiO3 for solar cell applications
This study presents a first-principles investigation of CaTiO3 and ZnTiO3 in both bulk and novel bilayer (two-layered) phases, employing the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k simulation code. For the first time, we propose and optimize the bilayer structures derived from their respective bulk phases. Electronic properties, including band structures and density of states (DoS), are computed for both bulk and layered phases, showing good agreement with existing literature. A detailed analysis of optical properties reveals enhanced photon absorption and conductivity in the bilayer phases, making them superior candidates for solar cell applications compared to their bulk counterparts. Furthermore, we evaluate thermoelectric performance through the Seebeck coefficient (S), power factor (σS2), and figure of merit (zT), demonstrating improved energy conversion efficiency in the layered phases. The dynamic stability of the proposed bilayers is confirmed via formation energy calculations, Gibbs free energy analysis, phonon dispersion studies, and molecular dynamics simulations. Our comparative study highlights the potential of layered semiconducting perovskite (CaTiO3) and metallic perovskite (ZnTiO3) for next-generation optoelectronic and energy-harvesting technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信