在饱和非线性介质中传播的三种孤子

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lihong Wang , Tingting Chen , Jingsong He
{"title":"在饱和非线性介质中传播的三种孤子","authors":"Lihong Wang ,&nbsp;Tingting Chen ,&nbsp;Jingsong He","doi":"10.1016/j.matcom.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the propagation of light pulses in nonlinear saturable optical media, focusing on the nonlinear Schrödinger equation (NLSE) characterized by a saturable nonlinearity. We employ a Madelung-type transformation to derive stationary solutions, resulting in three types of soliton solutions: peakon-like solutions, bright soliton, and dark peakon. Additionally, we explore the physical implications of the parameters governing the NLSE and conduct detailed stability analyses of the solitons utilizing the Vakhitov–Kolokolov stability criterion.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"239 ","pages":"Pages 83-95"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three types of solitons propagating in saturable nonlinear media\",\"authors\":\"Lihong Wang ,&nbsp;Tingting Chen ,&nbsp;Jingsong He\",\"doi\":\"10.1016/j.matcom.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the propagation of light pulses in nonlinear saturable optical media, focusing on the nonlinear Schrödinger equation (NLSE) characterized by a saturable nonlinearity. We employ a Madelung-type transformation to derive stationary solutions, resulting in three types of soliton solutions: peakon-like solutions, bright soliton, and dark peakon. Additionally, we explore the physical implications of the parameters governing the NLSE and conduct detailed stability analyses of the solitons utilizing the Vakhitov–Kolokolov stability criterion.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"239 \",\"pages\":\"Pages 83-95\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425001934\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001934","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究光脉冲在非线性可饱和光介质中的传播,重点研究具有可饱和非线性特征的非线性Schrödinger方程(NLSE)。我们利用madelung型变换推导出稳态解,得到了三种类型的孤子解:类峰解、亮孤子解和暗峰解。此外,我们探讨了控制NLSE参数的物理含义,并利用Vakhitov-Kolokolov稳定性判据对孤子进行了详细的稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three types of solitons propagating in saturable nonlinear media
In this paper, we investigate the propagation of light pulses in nonlinear saturable optical media, focusing on the nonlinear Schrödinger equation (NLSE) characterized by a saturable nonlinearity. We employ a Madelung-type transformation to derive stationary solutions, resulting in three types of soliton solutions: peakon-like solutions, bright soliton, and dark peakon. Additionally, we explore the physical implications of the parameters governing the NLSE and conduct detailed stability analyses of the solitons utilizing the Vakhitov–Kolokolov stability criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信