促进绿色微波超声辅助提取藏红花生物活性物质:通过OMPD-ANN-SVR比较研究的化学计量学和机器学习优化

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohamed Amine Mechatte , Sara Lebrazi , Mohammed El Ouassete , Amine Ez-Zoubi , Abderrazak Aboulghazi , Fatima Ez-Zahra Aabassi , Abdellah Farah , Mouhcine Fadil
{"title":"促进绿色微波超声辅助提取藏红花生物活性物质:通过OMPD-ANN-SVR比较研究的化学计量学和机器学习优化","authors":"Mohamed Amine Mechatte ,&nbsp;Sara Lebrazi ,&nbsp;Mohammed El Ouassete ,&nbsp;Amine Ez-Zoubi ,&nbsp;Abderrazak Aboulghazi ,&nbsp;Fatima Ez-Zahra Aabassi ,&nbsp;Abdellah Farah ,&nbsp;Mouhcine Fadil","doi":"10.1016/j.fbp.2025.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing the extraction of key bioactive markers (picrocrocin, safranal, crocin) from saffron (<em>Crocus sativus</em> L.) is crucial. This study optimized Microwave-Ultrasound-Assisted Extraction (MUAE) by comparing Optimal Mixture Process Design (OMPD), Artificial Neural Networks (ANN), and Support Vector Regression (SVR), considering solvent mixture (water/ethanol/glycerol) and process variables: extraction time (10–30 min), temperature (20–100 °C), and microwave power (100–500 W). Multivariate analysis elucidated the complex MUAE dynamics, revealing distinct clusters and highlighting the pivotal influence of temperature. OMPD modeling identified a binary water/ethanol solvent system, maximum power, and maximum extraction time as critical, with optimal temperatures varying per compound. Notably, the ANN model significantly outperformed OMPD and SVR in predictive accuracy, yielding the highest predicted maximum values under optimized conditions: 929.62 for picrocrocin, 703.62 for safranal, and 1058.61 for crocin. Experimental validation using HPLC-DAD confirmed the high efficiency of the ANN-derived optimal conditions, revealing high concentrations of picrocrocin, trans-4-crocine GG, trans-3-crocine GG, trans-2-crocineGg, cis-4-crocine GG, and safranal and demonstrating excellent recovery and precision for the target compounds. This work highlights the superior capability of ANN, integrated with multivariate analysis, for efficiently optimizing complex extraction processes and maximizing yields of valuable saffron bioactives.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"153 ","pages":"Pages 1-21"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the green microwave-ultrasound-assisted extraction of saffron bioactive compounds: Chemometric and machine learning optimization through OMPD-ANN-SVR comparative study\",\"authors\":\"Mohamed Amine Mechatte ,&nbsp;Sara Lebrazi ,&nbsp;Mohammed El Ouassete ,&nbsp;Amine Ez-Zoubi ,&nbsp;Abderrazak Aboulghazi ,&nbsp;Fatima Ez-Zahra Aabassi ,&nbsp;Abdellah Farah ,&nbsp;Mouhcine Fadil\",\"doi\":\"10.1016/j.fbp.2025.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimizing the extraction of key bioactive markers (picrocrocin, safranal, crocin) from saffron (<em>Crocus sativus</em> L.) is crucial. This study optimized Microwave-Ultrasound-Assisted Extraction (MUAE) by comparing Optimal Mixture Process Design (OMPD), Artificial Neural Networks (ANN), and Support Vector Regression (SVR), considering solvent mixture (water/ethanol/glycerol) and process variables: extraction time (10–30 min), temperature (20–100 °C), and microwave power (100–500 W). Multivariate analysis elucidated the complex MUAE dynamics, revealing distinct clusters and highlighting the pivotal influence of temperature. OMPD modeling identified a binary water/ethanol solvent system, maximum power, and maximum extraction time as critical, with optimal temperatures varying per compound. Notably, the ANN model significantly outperformed OMPD and SVR in predictive accuracy, yielding the highest predicted maximum values under optimized conditions: 929.62 for picrocrocin, 703.62 for safranal, and 1058.61 for crocin. Experimental validation using HPLC-DAD confirmed the high efficiency of the ANN-derived optimal conditions, revealing high concentrations of picrocrocin, trans-4-crocine GG, trans-3-crocine GG, trans-2-crocineGg, cis-4-crocine GG, and safranal and demonstrating excellent recovery and precision for the target compounds. This work highlights the superior capability of ANN, integrated with multivariate analysis, for efficiently optimizing complex extraction processes and maximizing yields of valuable saffron bioactives.</div></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":\"153 \",\"pages\":\"Pages 1-21\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308525001026\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308525001026","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

优选藏红花(Crocus sativus L.)中关键生物活性标志物(微藏红花素、番红花醛、藏红花素)的提取工艺至关重要。本研究通过比较最优混合工艺设计(OMPD)、人工神经网络(ANN)和支持向量回归(SVR)来优化微波超声辅助提取(MUAE),考虑溶剂混合物(水/乙醇/甘油)和工艺变量:提取时间(10-30 min)、温度(20-100°C)和微波功率(100-500 W)。多变量分析揭示了复杂的MUAE动态,揭示了不同的集群,并强调了温度的关键影响。OMPD模型确定了二元水/乙醇溶剂体系,最大功率和最大萃取时间是关键,每种化合物的最佳温度不同。值得注意的是,ANN模型在预测精度上明显优于OMPD和SVR,在优化条件下产生了最高的预测最大值:微番红花素929.62,番红花素703.62,番红花素1058.61。HPLC-DAD实验验证了ann衍生的最佳条件的高效率,揭示了高浓度的微苦参素、反式-4-藏红花GG、反式-3-藏红花GG、反式-2-藏红花GG、顺式-4-藏红花GG和番红花醛,并证明了目标化合物的高回收率和精密度。这项工作突出了人工神经网络与多元分析相结合的卓越能力,可以有效地优化复杂的提取过程,最大限度地提高藏红花生物活性物质的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting the green microwave-ultrasound-assisted extraction of saffron bioactive compounds: Chemometric and machine learning optimization through OMPD-ANN-SVR comparative study
Optimizing the extraction of key bioactive markers (picrocrocin, safranal, crocin) from saffron (Crocus sativus L.) is crucial. This study optimized Microwave-Ultrasound-Assisted Extraction (MUAE) by comparing Optimal Mixture Process Design (OMPD), Artificial Neural Networks (ANN), and Support Vector Regression (SVR), considering solvent mixture (water/ethanol/glycerol) and process variables: extraction time (10–30 min), temperature (20–100 °C), and microwave power (100–500 W). Multivariate analysis elucidated the complex MUAE dynamics, revealing distinct clusters and highlighting the pivotal influence of temperature. OMPD modeling identified a binary water/ethanol solvent system, maximum power, and maximum extraction time as critical, with optimal temperatures varying per compound. Notably, the ANN model significantly outperformed OMPD and SVR in predictive accuracy, yielding the highest predicted maximum values under optimized conditions: 929.62 for picrocrocin, 703.62 for safranal, and 1058.61 for crocin. Experimental validation using HPLC-DAD confirmed the high efficiency of the ANN-derived optimal conditions, revealing high concentrations of picrocrocin, trans-4-crocine GG, trans-3-crocine GG, trans-2-crocineGg, cis-4-crocine GG, and safranal and demonstrating excellent recovery and precision for the target compounds. This work highlights the superior capability of ANN, integrated with multivariate analysis, for efficiently optimizing complex extraction processes and maximizing yields of valuable saffron bioactives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信