Shiman Li , Mingzhi Yuan , Xiaokun Dai , Chenxi Zhang
{"title":"医学图像分割中不确定度估计方法的评价:探索不确定度在临床部署中的应用","authors":"Shiman Li , Mingzhi Yuan , Xiaokun Dai , Chenxi Zhang","doi":"10.1016/j.compmedimag.2025.102574","DOIUrl":null,"url":null,"abstract":"<div><div>Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102574"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment\",\"authors\":\"Shiman Li , Mingzhi Yuan , Xiaokun Dai , Chenxi Zhang\",\"doi\":\"10.1016/j.compmedimag.2025.102574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"124 \",\"pages\":\"Article 102574\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125000837\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000837","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment
Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.