多孔金属-大环骨架多结合位点上两种不同氨基酸残基的形状分选

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shohei Tashiro, Kosuke Nakata, Ryunosuke Hayashi, Mitsuhiko Shionoya
{"title":"多孔金属-大环骨架多结合位点上两种不同氨基酸残基的形状分选","authors":"Shohei Tashiro, Kosuke Nakata, Ryunosuke Hayashi, Mitsuhiko Shionoya","doi":"10.1039/d5sc00795j","DOIUrl":null,"url":null,"abstract":"The arrangement of amino acids within crystalline porous materials represents a unique approach to enhance their functionalities such as catalysis, separation and sensing. In particular, the simultaneous arrangement of distinct residues in crystalline frameworks, i.e., shape sorting, remains one of the most important challenges. Here, we demonstrate the shape sorting of two distinct amino acid residues, tryptophan and serine, within porous metal-macrocycle framework-1 via precise molecular recognition at multiple binding sites on the pore surface. Single-crystal X-ray diffraction analysis showed that the indole ring of an N-protected tryptophan molecule was effectively encapsulated within a binding pocket located at the bottom corners of the nanochannel, forming multipoint hydrogen bonds and CH-π interactions. In addition to tryptophan, N-protected serine was adsorbed onto the ceiling sites via multipoint hydrogen bonds. Moreover, modifying their protecting groups allowed us to control the relative positions of the two residues in the nanochannel. We further tested the co-adsorption of both residues in selective separation experiments. The results suggest that designing porous crystals with multiple binding sites is an effective strategy for precise heteroleptic arrangement of amino acid residues, resulting in enhanced functionalization of porous materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"1 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape sorting of two distinct amino acid residues at the multiple binding sites of a porous metal-macrocycle framework\",\"authors\":\"Shohei Tashiro, Kosuke Nakata, Ryunosuke Hayashi, Mitsuhiko Shionoya\",\"doi\":\"10.1039/d5sc00795j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arrangement of amino acids within crystalline porous materials represents a unique approach to enhance their functionalities such as catalysis, separation and sensing. In particular, the simultaneous arrangement of distinct residues in crystalline frameworks, i.e., shape sorting, remains one of the most important challenges. Here, we demonstrate the shape sorting of two distinct amino acid residues, tryptophan and serine, within porous metal-macrocycle framework-1 via precise molecular recognition at multiple binding sites on the pore surface. Single-crystal X-ray diffraction analysis showed that the indole ring of an N-protected tryptophan molecule was effectively encapsulated within a binding pocket located at the bottom corners of the nanochannel, forming multipoint hydrogen bonds and CH-π interactions. In addition to tryptophan, N-protected serine was adsorbed onto the ceiling sites via multipoint hydrogen bonds. Moreover, modifying their protecting groups allowed us to control the relative positions of the two residues in the nanochannel. We further tested the co-adsorption of both residues in selective separation experiments. The results suggest that designing porous crystals with multiple binding sites is an effective strategy for precise heteroleptic arrangement of amino acid residues, resulting in enhanced functionalization of porous materials.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc00795j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00795j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨基酸在晶体多孔材料中的排列代表了一种独特的方法来增强它们的功能,如催化、分离和传感。特别是,晶体框架中不同残基的同时排列,即形状分选,仍然是最重要的挑战之一。在这里,我们展示了两种不同的氨基酸残基,色氨酸和丝氨酸,在多孔金属-大环框架-1中,通过孔表面多个结合位点的精确分子识别进行形状排序。单晶x射线衍射分析表明,n保护色氨酸分子的吲哚环被有效地封装在纳米通道底部角的结合口袋中,形成多点氢键和CH-π相互作用。除色氨酸外,n保护丝氨酸通过多点氢键吸附在天花板上。此外,修改它们的保护基团使我们能够控制两个残基在纳米通道中的相对位置。我们在选择性分离实验中进一步测试了两种残留物的共吸附。结果表明,设计具有多个结合位点的多孔晶体是氨基酸残基精确异位排列的有效策略,从而增强了多孔材料的功能化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape sorting of two distinct amino acid residues at the multiple binding sites of a porous metal-macrocycle framework
The arrangement of amino acids within crystalline porous materials represents a unique approach to enhance their functionalities such as catalysis, separation and sensing. In particular, the simultaneous arrangement of distinct residues in crystalline frameworks, i.e., shape sorting, remains one of the most important challenges. Here, we demonstrate the shape sorting of two distinct amino acid residues, tryptophan and serine, within porous metal-macrocycle framework-1 via precise molecular recognition at multiple binding sites on the pore surface. Single-crystal X-ray diffraction analysis showed that the indole ring of an N-protected tryptophan molecule was effectively encapsulated within a binding pocket located at the bottom corners of the nanochannel, forming multipoint hydrogen bonds and CH-π interactions. In addition to tryptophan, N-protected serine was adsorbed onto the ceiling sites via multipoint hydrogen bonds. Moreover, modifying their protecting groups allowed us to control the relative positions of the two residues in the nanochannel. We further tested the co-adsorption of both residues in selective separation experiments. The results suggest that designing porous crystals with multiple binding sites is an effective strategy for precise heteroleptic arrangement of amino acid residues, resulting in enhanced functionalization of porous materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信