雀形鱼卵人工孵化方法。

IF 2.2 3区 生物学 Q1 ZOOLOGY
Gabrielle R Names, Britt J Heidinger
{"title":"雀形鱼卵人工孵化方法。","authors":"Gabrielle R Names, Britt J Heidinger","doi":"10.1093/icb/icaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change is leading to higher and more variable temperatures worldwide, and these changes are likely to have consequences on the incubation stage of egg-laying organisms. Artificial incubation can be used to address a variety of mechanistic, ecological, and conservation questions related to the development of egg-laying animals in a warming climate. Artificial incubation of passerine eggs remains rare because their eggs can be highly sensitive to incubation conditions, causing it to be challenging to successfully incubate their eggs to hatch in captivity. The goal of this study was to describe a protocol to artificially incubate eggs of house sparrows (Passer domesticus), a widespread model species, and to provide a framework that can be used to develop protocols for artificial incubation of other passerine species. Since sufficient egg mass loss is necessary for proper development and can be related to hatching success, we monitored mass loss of eggs in natural nests in the field and used this information to inform and modify artificial incubation conditions. We found that eggs in our study population lost an average of 11.34% of their original mass across the incubation period, and that mass loss was greater later in incubation. To identify conditions promoting high hatching success, we tested incubation conditions of 36.9°C-37.4°C, 40-50% relative humidity (RH), and automatic and hand egg turning. We achieved 100% hatching success of artificially incubated eggs using a rocking incubator with automatic turning (90°/hour) and three 180° hand turns per day, incubation conditions of 37.36°C and 42.6% RH, and hatching conditions of 36.73°C and 57.9% RH. These conditions and the framework we provide to develop incubation protocols for other passerine species can be applied to better understand how changing environmental conditions are affecting the development of egg-laying organisms.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for artificial incubation of passerine eggs.\",\"authors\":\"Gabrielle R Names, Britt J Heidinger\",\"doi\":\"10.1093/icb/icaf054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change is leading to higher and more variable temperatures worldwide, and these changes are likely to have consequences on the incubation stage of egg-laying organisms. Artificial incubation can be used to address a variety of mechanistic, ecological, and conservation questions related to the development of egg-laying animals in a warming climate. Artificial incubation of passerine eggs remains rare because their eggs can be highly sensitive to incubation conditions, causing it to be challenging to successfully incubate their eggs to hatch in captivity. The goal of this study was to describe a protocol to artificially incubate eggs of house sparrows (Passer domesticus), a widespread model species, and to provide a framework that can be used to develop protocols for artificial incubation of other passerine species. Since sufficient egg mass loss is necessary for proper development and can be related to hatching success, we monitored mass loss of eggs in natural nests in the field and used this information to inform and modify artificial incubation conditions. We found that eggs in our study population lost an average of 11.34% of their original mass across the incubation period, and that mass loss was greater later in incubation. To identify conditions promoting high hatching success, we tested incubation conditions of 36.9°C-37.4°C, 40-50% relative humidity (RH), and automatic and hand egg turning. We achieved 100% hatching success of artificially incubated eggs using a rocking incubator with automatic turning (90°/hour) and three 180° hand turns per day, incubation conditions of 37.36°C and 42.6% RH, and hatching conditions of 36.73°C and 57.9% RH. These conditions and the framework we provide to develop incubation protocols for other passerine species can be applied to better understand how changing environmental conditions are affecting the development of egg-laying organisms.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icaf054\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化正在导致全球温度升高和变化,这些变化可能对产卵生物的孵化阶段产生影响。人工孵化可用于解决与气候变暖中产卵动物发育有关的各种机械,生态和保护问题。人工孵化的雀形目鸟卵仍然是罕见的,因为他们的蛋可以孵化条件高度敏感,使其具有挑战性成功孵化鸡蛋舱口被囚禁。本研究的目的是描述一种人工孵化家雀(Passer domesticus)卵的方案,并提供一个框架,可用于制定其他雀形目物种的人工孵化方案。由于足够的鸡蛋质量损失是正常发育所必需的,并且可能与孵化成功有关,因此我们在野外监测了自然巢穴中鸡蛋的质量损失,并利用这些信息来通知和修改人工孵化条件。我们发现,在我们的研究种群中,鸡蛋在孵化期间平均损失了其原始质量的11.34%,并且在孵化后期质量损失更大。为了确定高孵化成功率的条件,我们测试了36.9°C-37.4°C、40-50%相对湿度(RH)、自动和手动翻蛋的孵化条件。采用自动旋转(90°/h)、每天手动旋转3次180°的摇蛋箱,孵化条件为37.36℃、42.6% RH,孵化条件为36.73℃、57.9% RH,人工孵卵成功率为100%。这些条件和我们为开发其他雀形目物种的孵化方案提供的框架可以更好地应用于了解不断变化的环境条件如何影响产卵生物的发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods for artificial incubation of passerine eggs.

Climate change is leading to higher and more variable temperatures worldwide, and these changes are likely to have consequences on the incubation stage of egg-laying organisms. Artificial incubation can be used to address a variety of mechanistic, ecological, and conservation questions related to the development of egg-laying animals in a warming climate. Artificial incubation of passerine eggs remains rare because their eggs can be highly sensitive to incubation conditions, causing it to be challenging to successfully incubate their eggs to hatch in captivity. The goal of this study was to describe a protocol to artificially incubate eggs of house sparrows (Passer domesticus), a widespread model species, and to provide a framework that can be used to develop protocols for artificial incubation of other passerine species. Since sufficient egg mass loss is necessary for proper development and can be related to hatching success, we monitored mass loss of eggs in natural nests in the field and used this information to inform and modify artificial incubation conditions. We found that eggs in our study population lost an average of 11.34% of their original mass across the incubation period, and that mass loss was greater later in incubation. To identify conditions promoting high hatching success, we tested incubation conditions of 36.9°C-37.4°C, 40-50% relative humidity (RH), and automatic and hand egg turning. We achieved 100% hatching success of artificially incubated eggs using a rocking incubator with automatic turning (90°/hour) and three 180° hand turns per day, incubation conditions of 37.36°C and 42.6% RH, and hatching conditions of 36.73°C and 57.9% RH. These conditions and the framework we provide to develop incubation protocols for other passerine species can be applied to better understand how changing environmental conditions are affecting the development of egg-laying organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信