Long Cheng, Hang Yu, Yujing Qin, Ruixin Wang, Tie Su, Gaoyuan Lyu, Zijian Huang, Hongtao Li, Yan Jin, Yilong Li, Gang Wang
{"title":"lncRNA ST18- as1通过在细胞质中锚定FUS来增强ST18 mRNA的稳定性,从而抑制胰腺癌的进展。","authors":"Long Cheng, Hang Yu, Yujing Qin, Ruixin Wang, Tie Su, Gaoyuan Lyu, Zijian Huang, Hongtao Li, Yan Jin, Yilong Li, Gang Wang","doi":"10.1038/s41388-025-03455-4","DOIUrl":null,"url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) is associated with a high mortality rate and short survival time. Long noncoding RNAs (lncRNAs) play a significant role in the progression of PDAC. However, prognostic lncRNAs associated with overall survival (OS) in patients with PDAC remain elusive. RNA sequencing was used to identify differential lncRNA expression between short-term and long-term PDAC patients. We identified a novel lncRNA (ENSG00000253924), termed ST18-AS1 (ST18-associated lncRNA), that is highly expressed in the tissues of long-term PDAC patients. High ST18-AS1 expression was correlated with favorable clinical outcomes, and the upregulation of ST18-AS1 expression in PDAC cell lines suppressed cell proliferation and promoted apoptosis both in vivo and in vitro. The key downstream target regulated by ST18-AS1 was Suppression of tumorigenicity 18 (ST18). We also found that ST18 expression was lower in PDAC tissues compared to non-tumorous adjacent tissues (NATs) and that higher ST18 expression was correlated with better clinical outcomes. Accordingly, the forced expression of ST18 inhibited proliferation and promoted apoptosis in tumor cells. Mechanistic studies showed that ST18-AS1 maintained the stability of ST18 mRNA by binding to Fused in sarcoma (FUS) and anchoring FUS in the cytoplasm. Overall, we identified ST18-AS1 as a novel biomarker that inhibits PDAC cell proliferation and promotes PDAC cell apoptosis through ST18. Targeting ST18-AS1/ST18 may be a potential therapeutic strategy for treating PDAC.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"44 32","pages":"2850-2863"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lncRNA ST18-AS1 suppresses pancreatic cancer progression by enhancing ST18 mRNA stability through anchoring FUS in the cytoplasm\",\"authors\":\"Long Cheng, Hang Yu, Yujing Qin, Ruixin Wang, Tie Su, Gaoyuan Lyu, Zijian Huang, Hongtao Li, Yan Jin, Yilong Li, Gang Wang\",\"doi\":\"10.1038/s41388-025-03455-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pancreatic ductal adenocarcinoma (PDAC) is associated with a high mortality rate and short survival time. Long noncoding RNAs (lncRNAs) play a significant role in the progression of PDAC. However, prognostic lncRNAs associated with overall survival (OS) in patients with PDAC remain elusive. RNA sequencing was used to identify differential lncRNA expression between short-term and long-term PDAC patients. We identified a novel lncRNA (ENSG00000253924), termed ST18-AS1 (ST18-associated lncRNA), that is highly expressed in the tissues of long-term PDAC patients. High ST18-AS1 expression was correlated with favorable clinical outcomes, and the upregulation of ST18-AS1 expression in PDAC cell lines suppressed cell proliferation and promoted apoptosis both in vivo and in vitro. The key downstream target regulated by ST18-AS1 was Suppression of tumorigenicity 18 (ST18). We also found that ST18 expression was lower in PDAC tissues compared to non-tumorous adjacent tissues (NATs) and that higher ST18 expression was correlated with better clinical outcomes. Accordingly, the forced expression of ST18 inhibited proliferation and promoted apoptosis in tumor cells. Mechanistic studies showed that ST18-AS1 maintained the stability of ST18 mRNA by binding to Fused in sarcoma (FUS) and anchoring FUS in the cytoplasm. Overall, we identified ST18-AS1 as a novel biomarker that inhibits PDAC cell proliferation and promotes PDAC cell apoptosis through ST18. Targeting ST18-AS1/ST18 may be a potential therapeutic strategy for treating PDAC.\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\"44 32\",\"pages\":\"2850-2863\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41388-025-03455-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-025-03455-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The lncRNA ST18-AS1 suppresses pancreatic cancer progression by enhancing ST18 mRNA stability through anchoring FUS in the cytoplasm
Pancreatic ductal adenocarcinoma (PDAC) is associated with a high mortality rate and short survival time. Long noncoding RNAs (lncRNAs) play a significant role in the progression of PDAC. However, prognostic lncRNAs associated with overall survival (OS) in patients with PDAC remain elusive. RNA sequencing was used to identify differential lncRNA expression between short-term and long-term PDAC patients. We identified a novel lncRNA (ENSG00000253924), termed ST18-AS1 (ST18-associated lncRNA), that is highly expressed in the tissues of long-term PDAC patients. High ST18-AS1 expression was correlated with favorable clinical outcomes, and the upregulation of ST18-AS1 expression in PDAC cell lines suppressed cell proliferation and promoted apoptosis both in vivo and in vitro. The key downstream target regulated by ST18-AS1 was Suppression of tumorigenicity 18 (ST18). We also found that ST18 expression was lower in PDAC tissues compared to non-tumorous adjacent tissues (NATs) and that higher ST18 expression was correlated with better clinical outcomes. Accordingly, the forced expression of ST18 inhibited proliferation and promoted apoptosis in tumor cells. Mechanistic studies showed that ST18-AS1 maintained the stability of ST18 mRNA by binding to Fused in sarcoma (FUS) and anchoring FUS in the cytoplasm. Overall, we identified ST18-AS1 as a novel biomarker that inhibits PDAC cell proliferation and promotes PDAC cell apoptosis through ST18. Targeting ST18-AS1/ST18 may be a potential therapeutic strategy for treating PDAC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.