{"title":"一个通用的深度学习体积分割工具,用于生物样品的体积电子显微镜。","authors":"Yuyao Huang , Nickhil Jadav , Georgia Rutter , Lech Szymanski , Mihnea Bostina , Duane P. Harland","doi":"10.1016/j.jsb.2025.108214","DOIUrl":null,"url":null,"abstract":"<div><div>We present the Volume Segmentation Tool (VST), a deep learning software tool that implements volumetric image segmentation in volume electron microscopy image stack data from a wide range of biological sample types. VST automates the handling of data preprocessing, data augmentation, and network building, as well as the configuration for model training, while adapting to the specific dataset. We have tried to make VST more accessible by designing it to operate entirely on local hardware and have provided a browser-based interface with additional features for visualizations of the networks and augmented datasets. VST can utilise contour map prediction to support instance segmentation on top of semantic segmentation. Through examples from various resin-embedded sample derived transmission electron microscopy and scanning electron microscopy datasets, we demonstrate that VST achieves state of the art performance compared to existing approaches.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 3","pages":"Article 108214"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalist deep-learning volume segmentation tool for volume electron microscopy of biological samples\",\"authors\":\"Yuyao Huang , Nickhil Jadav , Georgia Rutter , Lech Szymanski , Mihnea Bostina , Duane P. Harland\",\"doi\":\"10.1016/j.jsb.2025.108214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present the Volume Segmentation Tool (VST), a deep learning software tool that implements volumetric image segmentation in volume electron microscopy image stack data from a wide range of biological sample types. VST automates the handling of data preprocessing, data augmentation, and network building, as well as the configuration for model training, while adapting to the specific dataset. We have tried to make VST more accessible by designing it to operate entirely on local hardware and have provided a browser-based interface with additional features for visualizations of the networks and augmented datasets. VST can utilise contour map prediction to support instance segmentation on top of semantic segmentation. Through examples from various resin-embedded sample derived transmission electron microscopy and scanning electron microscopy datasets, we demonstrate that VST achieves state of the art performance compared to existing approaches.</div></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":\"217 3\",\"pages\":\"Article 108214\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847725000498\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000498","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A generalist deep-learning volume segmentation tool for volume electron microscopy of biological samples
We present the Volume Segmentation Tool (VST), a deep learning software tool that implements volumetric image segmentation in volume electron microscopy image stack data from a wide range of biological sample types. VST automates the handling of data preprocessing, data augmentation, and network building, as well as the configuration for model training, while adapting to the specific dataset. We have tried to make VST more accessible by designing it to operate entirely on local hardware and have provided a browser-based interface with additional features for visualizations of the networks and augmented datasets. VST can utilise contour map prediction to support instance segmentation on top of semantic segmentation. Through examples from various resin-embedded sample derived transmission electron microscopy and scanning electron microscopy datasets, we demonstrate that VST achieves state of the art performance compared to existing approaches.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure