PRMT5和MAT2A的联合抑制在MTAP纯合子缺陷胶质瘤模型中显示出很强的合成致死率。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Zuoyu Jiang, Xuetao Li, Zongyu Xiao, Wenjuan Gan, Xuewen Zhang, Yang Zhang, Weichao Wang, Qinzhi E, Yu Huang, Qikun Shi, Yi Tang, Jiaming Du, Hanmiao Dong, Jian Li, Yulun Huang
{"title":"PRMT5和MAT2A的联合抑制在MTAP纯合子缺陷胶质瘤模型中显示出很强的合成致死率。","authors":"Zuoyu Jiang, Xuetao Li, Zongyu Xiao, Wenjuan Gan, Xuewen Zhang, Yang Zhang, Weichao Wang, Qinzhi E, Yu Huang, Qikun Shi, Yi Tang, Jiaming Du, Hanmiao Dong, Jian Li, Yulun Huang","doi":"10.1038/s41420-025-02545-2","DOIUrl":null,"url":null,"abstract":"<p><p>The intra- and intertumoral heterogeneity of gliomas present major challenges to effective chemotherapy. This study explored the combined effects of PRMT5 and MAT2A inhibitors on glioma progression. The expression of drug targets was determined in cell models using western blotting and immunofluorescence assay. CCK-8, colony-formation, EdU fluorescence, and flow cytometry cell cycle assays were conducted to assess the effect of the drugs on cell proliferation. Additionally, TUNEL fluorescence assay, flow cytometry apoptosis assay, western blotting, and comet assay were used to evaluate drug-induced apoptosis and DNA damage. Immunohistochemistry was used to validate the effect of the drugs in a 3D glioma organoid model. Patient-derived orthotopic xenograft models were used for in vivo efficacy evaluations. Lastly, transcriptome sequencing was used to elucidate the mechanism of action of the drugs, which was confirmed using western blotting. In phenotypic experiments, PRMT5 inhibitors reduced SDMA levels, inhibited cell proliferation, and promoted apoptosis in glioma models. The combination of PRMT5 inhibitors with MAT2A inhibitors enhanced synthetic lethality, leading to more potent antitumor effects. In vivo studies demonstrated that the drug combination significantly inhibited tumor growth and prolonged survival time. Our study proved the combination of PRMT5 and MAT2A inhibitors may induce synthetic lethality by downregulating the PI3K-AKT pathway, indicating the potential of this approach in treating gliomas.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"261"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126582/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined inhibition by PRMT5 and MAT2A demonstrates a strong synthetic lethality in MTAP homozygous-deficient glioma models.\",\"authors\":\"Zuoyu Jiang, Xuetao Li, Zongyu Xiao, Wenjuan Gan, Xuewen Zhang, Yang Zhang, Weichao Wang, Qinzhi E, Yu Huang, Qikun Shi, Yi Tang, Jiaming Du, Hanmiao Dong, Jian Li, Yulun Huang\",\"doi\":\"10.1038/s41420-025-02545-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intra- and intertumoral heterogeneity of gliomas present major challenges to effective chemotherapy. This study explored the combined effects of PRMT5 and MAT2A inhibitors on glioma progression. The expression of drug targets was determined in cell models using western blotting and immunofluorescence assay. CCK-8, colony-formation, EdU fluorescence, and flow cytometry cell cycle assays were conducted to assess the effect of the drugs on cell proliferation. Additionally, TUNEL fluorescence assay, flow cytometry apoptosis assay, western blotting, and comet assay were used to evaluate drug-induced apoptosis and DNA damage. Immunohistochemistry was used to validate the effect of the drugs in a 3D glioma organoid model. Patient-derived orthotopic xenograft models were used for in vivo efficacy evaluations. Lastly, transcriptome sequencing was used to elucidate the mechanism of action of the drugs, which was confirmed using western blotting. In phenotypic experiments, PRMT5 inhibitors reduced SDMA levels, inhibited cell proliferation, and promoted apoptosis in glioma models. The combination of PRMT5 inhibitors with MAT2A inhibitors enhanced synthetic lethality, leading to more potent antitumor effects. In vivo studies demonstrated that the drug combination significantly inhibited tumor growth and prolonged survival time. Our study proved the combination of PRMT5 and MAT2A inhibitors may induce synthetic lethality by downregulating the PI3K-AKT pathway, indicating the potential of this approach in treating gliomas.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"261\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126582/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02545-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02545-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胶质瘤肿瘤内部和肿瘤间的异质性是有效化疗的主要挑战。本研究探讨了PRMT5和MAT2A抑制剂对胶质瘤进展的联合作用。采用western blotting和免疫荧光法测定细胞模型中药物靶点的表达。通过CCK-8、集落形成、EdU荧光和流式细胞术细胞周期测定来评估药物对细胞增殖的影响。此外,采用TUNEL荧光法、流式细胞术细胞凋亡法、western blotting和comet法评价药物诱导的细胞凋亡和DNA损伤。采用免疫组化方法验证药物在三维胶质瘤类器官模型中的作用。采用患者来源的原位异种移植物模型进行体内疗效评估。最后,利用转录组测序技术阐明药物的作用机制,并通过western blotting证实。在表型实验中,PRMT5抑制剂在胶质瘤模型中降低SDMA水平,抑制细胞增殖,促进细胞凋亡。PRMT5抑制剂与MAT2A抑制剂联合使用可增强合成致死率,从而产生更有效的抗肿瘤作用。体内研究表明,联合用药可显著抑制肿瘤生长,延长生存时间。我们的研究证明,PRMT5和MAT2A抑制剂联合使用可能通过下调PI3K-AKT通路诱导合成致死性,这表明该方法在治疗胶质瘤方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined inhibition by PRMT5 and MAT2A demonstrates a strong synthetic lethality in MTAP homozygous-deficient glioma models.

The intra- and intertumoral heterogeneity of gliomas present major challenges to effective chemotherapy. This study explored the combined effects of PRMT5 and MAT2A inhibitors on glioma progression. The expression of drug targets was determined in cell models using western blotting and immunofluorescence assay. CCK-8, colony-formation, EdU fluorescence, and flow cytometry cell cycle assays were conducted to assess the effect of the drugs on cell proliferation. Additionally, TUNEL fluorescence assay, flow cytometry apoptosis assay, western blotting, and comet assay were used to evaluate drug-induced apoptosis and DNA damage. Immunohistochemistry was used to validate the effect of the drugs in a 3D glioma organoid model. Patient-derived orthotopic xenograft models were used for in vivo efficacy evaluations. Lastly, transcriptome sequencing was used to elucidate the mechanism of action of the drugs, which was confirmed using western blotting. In phenotypic experiments, PRMT5 inhibitors reduced SDMA levels, inhibited cell proliferation, and promoted apoptosis in glioma models. The combination of PRMT5 inhibitors with MAT2A inhibitors enhanced synthetic lethality, leading to more potent antitumor effects. In vivo studies demonstrated that the drug combination significantly inhibited tumor growth and prolonged survival time. Our study proved the combination of PRMT5 and MAT2A inhibitors may induce synthetic lethality by downregulating the PI3K-AKT pathway, indicating the potential of this approach in treating gliomas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信