化学与冶金工程课程热力学教学的计算工具

IF 2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
João Paulo Viana, Allan Amendola Santos, Rogério Navarro Correia de Siqueira
{"title":"化学与冶金工程课程热力学教学的计算工具","authors":"João Paulo Viana,&nbsp;Allan Amendola Santos,&nbsp;Rogério Navarro Correia de Siqueira","doi":"10.1002/cae.70055","DOIUrl":null,"url":null,"abstract":"<p>Thermodynamics is considered, among many engineering students, a very difficult branch of physics, especially regarding phase equilibria modeling, which usually often requires the use of commercial software and/or complex algorithms, rarely available for the general public. The present article provides new and simple Python numerical codes for calculating condensed phase equilibria, using pure metals and an alloy (Cu–Ni) as example, for a validity and consistency check, results were compared with both literature data and Thermo-Calc software's simulations. All parameters for computing pure metal's molar Gibbs energies and chemical activities for liquid and solid solutions were extracted from SSOL3 (SGTE) database. Regarding the pure metals (Bi, Cu, Nb, Ni, Pd, Pt, Sb, Ta, and Th), excellent agreement with literature values has been achieved in all cases, also including the solid–solid transition found for thorium. Regarding the Cu–Ni alloy phase equilibrium behavior, the proposed algorithm has also resulted in a quantitative agreement with literature experimental data and equilibrium liquidus temperatures and solid phase compositions calculated with Thermo-Calc software together with the SSOL2 database. The authors believe that the proposed algorithms could be of valuable use as teaching tools in metallurgical or chemical engineering courses, for example, through computational exercises to predict equilibrium conditions (transition temperatures, phase compositions) and or thermodynamic properties (molar Gibbs energy, enthalpy, and entropy), as exemplified by the activities proposed in the two exercise lists provided as Supporting Information. It is important to note that, although only metallic systems have been explored as examples, the same logic and thermodynamic principles can be applied to other phase equilibria problems involving inorganic condensed phases, for which accurate molar Gibbs energy models can be constructed or obtained from reliable databases.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"33 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.70055","citationCount":"0","resultStr":"{\"title\":\"Computational Tools for Thermodynamic Teaching in Chemical and Metallurgical Engineering Courses\",\"authors\":\"João Paulo Viana,&nbsp;Allan Amendola Santos,&nbsp;Rogério Navarro Correia de Siqueira\",\"doi\":\"10.1002/cae.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermodynamics is considered, among many engineering students, a very difficult branch of physics, especially regarding phase equilibria modeling, which usually often requires the use of commercial software and/or complex algorithms, rarely available for the general public. The present article provides new and simple Python numerical codes for calculating condensed phase equilibria, using pure metals and an alloy (Cu–Ni) as example, for a validity and consistency check, results were compared with both literature data and Thermo-Calc software's simulations. All parameters for computing pure metal's molar Gibbs energies and chemical activities for liquid and solid solutions were extracted from SSOL3 (SGTE) database. Regarding the pure metals (Bi, Cu, Nb, Ni, Pd, Pt, Sb, Ta, and Th), excellent agreement with literature values has been achieved in all cases, also including the solid–solid transition found for thorium. Regarding the Cu–Ni alloy phase equilibrium behavior, the proposed algorithm has also resulted in a quantitative agreement with literature experimental data and equilibrium liquidus temperatures and solid phase compositions calculated with Thermo-Calc software together with the SSOL2 database. The authors believe that the proposed algorithms could be of valuable use as teaching tools in metallurgical or chemical engineering courses, for example, through computational exercises to predict equilibrium conditions (transition temperatures, phase compositions) and or thermodynamic properties (molar Gibbs energy, enthalpy, and entropy), as exemplified by the activities proposed in the two exercise lists provided as Supporting Information. It is important to note that, although only metallic systems have been explored as examples, the same logic and thermodynamic principles can be applied to other phase equilibria problems involving inorganic condensed phases, for which accurate molar Gibbs energy models can be constructed or obtained from reliable databases.</p>\",\"PeriodicalId\":50643,\"journal\":{\"name\":\"Computer Applications in Engineering Education\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.70055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Applications in Engineering Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.70055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.70055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在许多工程专业的学生中,热力学被认为是物理学中一个非常困难的分支,特别是关于相平衡建模,这通常需要使用商业软件和/或复杂的算法,很少为公众提供。本文以纯金属和合金(Cu-Ni)为例,提供了一种新的、简单的Python计算凝聚相平衡的数值程序,以验证其有效性和一致性,并将结果与文献数据和thermal - calc软件的模拟结果进行了比较。计算纯金属的摩尔吉布斯能和液体和固体溶液的化学活性的所有参数都是从SSOL3 (SGTE)数据库中提取的。对于纯金属(Bi, Cu, Nb, Ni, Pd, Pt, Sb, Ta和Th),在所有情况下都与文献值非常吻合,也包括钍的固-固转变。对于Cu-Ni合金的相平衡行为,所提出的算法也与文献实验数据以及用thermal - calc软件和SSOL2数据库计算的平衡液相温度和固相组成的定量一致。作者认为,所提出的算法可以作为冶金或化学工程课程的教学工具,例如,通过计算练习来预测平衡条件(转变温度,相组成)和/或热力学性质(摩尔吉布斯能量,焓和熵),作为支持信息提供的两个练习列表中提出的活动的例子。值得注意的是,虽然只研究了金属体系作为例子,但同样的逻辑和热力学原理可以应用于涉及无机凝聚相的其他相平衡问题,为此可以构建准确的摩尔吉布斯能量模型或从可靠的数据库中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Tools for Thermodynamic Teaching in Chemical and Metallurgical Engineering Courses

Thermodynamics is considered, among many engineering students, a very difficult branch of physics, especially regarding phase equilibria modeling, which usually often requires the use of commercial software and/or complex algorithms, rarely available for the general public. The present article provides new and simple Python numerical codes for calculating condensed phase equilibria, using pure metals and an alloy (Cu–Ni) as example, for a validity and consistency check, results were compared with both literature data and Thermo-Calc software's simulations. All parameters for computing pure metal's molar Gibbs energies and chemical activities for liquid and solid solutions were extracted from SSOL3 (SGTE) database. Regarding the pure metals (Bi, Cu, Nb, Ni, Pd, Pt, Sb, Ta, and Th), excellent agreement with literature values has been achieved in all cases, also including the solid–solid transition found for thorium. Regarding the Cu–Ni alloy phase equilibrium behavior, the proposed algorithm has also resulted in a quantitative agreement with literature experimental data and equilibrium liquidus temperatures and solid phase compositions calculated with Thermo-Calc software together with the SSOL2 database. The authors believe that the proposed algorithms could be of valuable use as teaching tools in metallurgical or chemical engineering courses, for example, through computational exercises to predict equilibrium conditions (transition temperatures, phase compositions) and or thermodynamic properties (molar Gibbs energy, enthalpy, and entropy), as exemplified by the activities proposed in the two exercise lists provided as Supporting Information. It is important to note that, although only metallic systems have been explored as examples, the same logic and thermodynamic principles can be applied to other phase equilibria problems involving inorganic condensed phases, for which accurate molar Gibbs energy models can be constructed or obtained from reliable databases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Applications in Engineering Education
Computer Applications in Engineering Education 工程技术-工程:综合
CiteScore
7.20
自引率
10.30%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信