基于去噪扩散概率模型的三维粘土微观结构综合

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ali Aouf , Eric Laloy , Bart Rogiers , Christophe De Vleeschouwer
{"title":"基于去噪扩散概率模型的三维粘土微观结构综合","authors":"Ali Aouf ,&nbsp;Eric Laloy ,&nbsp;Bart Rogiers ,&nbsp;Christophe De Vleeschouwer","doi":"10.1016/j.acags.2025.100248","DOIUrl":null,"url":null,"abstract":"<div><div>This work is concerned with the challenging task of generating 3D-consistent binary microstructures of heterogeneous clay materials. We leverage denoising diffusion probabilistic models (DDPMs) to do so and show that DDPMs outperform two classical generative adversarial networks (GANs) for a 2D generation task. Next, our experiments demonstrate that our DDPMs can produce high-quality, diverse realizations that well capture the spatial statistics of two distinct clay microstructures. Moreover, we show that DDPMs can be implicitly trained to generate porosity-conditioned samples. To the best of our knowledge, this is the first study that addresses clay microstructure generation with DDPMs.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"26 ","pages":"Article 100248"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D clay microstructure synthesis using Denoising Diffusion Probabilistic Models\",\"authors\":\"Ali Aouf ,&nbsp;Eric Laloy ,&nbsp;Bart Rogiers ,&nbsp;Christophe De Vleeschouwer\",\"doi\":\"10.1016/j.acags.2025.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work is concerned with the challenging task of generating 3D-consistent binary microstructures of heterogeneous clay materials. We leverage denoising diffusion probabilistic models (DDPMs) to do so and show that DDPMs outperform two classical generative adversarial networks (GANs) for a 2D generation task. Next, our experiments demonstrate that our DDPMs can produce high-quality, diverse realizations that well capture the spatial statistics of two distinct clay microstructures. Moreover, we show that DDPMs can be implicitly trained to generate porosity-conditioned samples. To the best of our knowledge, this is the first study that addresses clay microstructure generation with DDPMs.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"26 \",\"pages\":\"Article 100248\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197425000308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作涉及到产生三维一致的非均质粘土材料二元微结构的挑战性任务。我们利用去噪扩散概率模型(ddpm)来做到这一点,并表明ddpm在2D生成任务中优于两个经典的生成对抗网络(gan)。接下来,我们的实验表明,我们的ddpm可以产生高质量的,多样化的实现,很好地捕获两种不同粘土微观结构的空间统计。此外,我们表明ddpm可以隐式训练来生成孔隙率条件的样本。据我们所知,这是第一个用ddpm处理粘土微观结构生成的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D clay microstructure synthesis using Denoising Diffusion Probabilistic Models
This work is concerned with the challenging task of generating 3D-consistent binary microstructures of heterogeneous clay materials. We leverage denoising diffusion probabilistic models (DDPMs) to do so and show that DDPMs outperform two classical generative adversarial networks (GANs) for a 2D generation task. Next, our experiments demonstrate that our DDPMs can produce high-quality, diverse realizations that well capture the spatial statistics of two distinct clay microstructures. Moreover, we show that DDPMs can be implicitly trained to generate porosity-conditioned samples. To the best of our knowledge, this is the first study that addresses clay microstructure generation with DDPMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信