{"title":"库普曼特征函数空间的泛函维数","authors":"Ido Cohen , Eli Appleboim , Gershon Wolansky","doi":"10.1016/j.rinam.2025.100585","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the general form solution of <em>Koopman Partial Differential Equation</em> for an autonomous system of <span><math><mi>N</mi></math></span> ordinary differential equations. We identify a domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for which any number in the complex plane is an eigenvalue of the Koopman operator, and all eigensolutions are obtained from <span><math><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></math></span> functionally independent invariants of the system. Thus, we demonstrate that one may, in principle, diagonalize the system with only <span><math><mi>N</mi></math></span> functionally independent Koopman eigenfunctions.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100585"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional dimensionality of Koopman eigenfunction space\",\"authors\":\"Ido Cohen , Eli Appleboim , Gershon Wolansky\",\"doi\":\"10.1016/j.rinam.2025.100585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents the general form solution of <em>Koopman Partial Differential Equation</em> for an autonomous system of <span><math><mi>N</mi></math></span> ordinary differential equations. We identify a domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for which any number in the complex plane is an eigenvalue of the Koopman operator, and all eigensolutions are obtained from <span><math><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></math></span> functionally independent invariants of the system. Thus, we demonstrate that one may, in principle, diagonalize the system with only <span><math><mi>N</mi></math></span> functionally independent Koopman eigenfunctions.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100585\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Functional dimensionality of Koopman eigenfunction space
This work presents the general form solution of Koopman Partial Differential Equation for an autonomous system of ordinary differential equations. We identify a domain in for which any number in the complex plane is an eigenvalue of the Koopman operator, and all eigensolutions are obtained from functionally independent invariants of the system. Thus, we demonstrate that one may, in principle, diagonalize the system with only functionally independent Koopman eigenfunctions.