黄铁矿振荡区带的自组织起源:一个耦合的扩散反应模型和ph依赖的砷吸附反馈机制

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Wenhong Johnson Qiu, Mei-Fu Zhou
{"title":"黄铁矿振荡区带的自组织起源:一个耦合的扩散反应模型和ph依赖的砷吸附反馈机制","authors":"Wenhong Johnson Qiu, Mei-Fu Zhou","doi":"10.1016/j.gca.2025.05.021","DOIUrl":null,"url":null,"abstract":"Pyrite from hydrothermal deposits often exhibits oscillatory zoning, controlling the distribution of trace elements, like As and Au. The origin of this zonal pattern has long been debated between episodic fluid changes and local chemical disequilibrium. Our study of an epithermal Pb-Zn deposit reveals arsenic oscillatory zonation in monocrystalline pyrite grains. Guided by the results of examination and the fact that As can be adsorbed onto pyrite under high pH conditions, inhibiting crystallization, we propose a quantitative diffusion–reaction model to numerically simulate the formation of oscillatory zoning in pyrite. The simulation reveals that in As-bearing supersaturated hydrothermal fluids, pyrite growth consumes HS<ce:sup loc=\"post\">−</ce:sup> and releases H<ce:sup loc=\"post\">+</ce:sup>, reducing As adsorption and accelerating crystallization. With Fe<ce:sup loc=\"post\">2+</ce:sup> on the crystal surface rapidly consumed, growth speed of pyrite is reduced to allow As to be adsorbed and thus to inhibit growth. This cycle restarts as Fe<ce:sup loc=\"post\">2+</ce:sup> is replenished from the enveloping bulk fluid via diffusion, leading to periodic growth and As adsorption. The formation of As-oscillatory zoning in pyrite is resultant from a fine balance between multiple parameters in environments, including diffusion coefficients (<mml:math altimg=\"si10.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> and <mml:math altimg=\"si11.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>) and concentrations (<mml:math altimg=\"si45.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math>, <mml:math altimg=\"si62.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>, <mml:math altimg=\"si46.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>) of ions, pH, temperature and hydrodynamic conditions. The simulation reveals that slightly acidic (e.g., pH = ∼4) As-bearing supersaturated epithermal environments (&lt;∼180 °C) with <mml:math altimg=\"si62.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>(e.g., ∼30 mM) higher than <mml:math altimg=\"si45.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> (e.g., ∼2 mM) and ratios of <mml:math altimg=\"si63.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub><mml:mo stretchy=\"false\">/</mml:mo><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> lower than 0.3 are favorable for the formation of As-oscillatory zoned pyrite. Various As zonal patterns can be formed under different parameters. The increase of <mml:math altimg=\"si63.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub><mml:mo stretchy=\"false\">/</mml:mo><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> ratios, <mml:math altimg=\"si45.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> and <mml:math altimg=\"si62.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\"italic\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> and decrease of pH in hydrothermal fluids would lead to change of zonation patterns from regular oscillation to damped oscillation and to convergent oscillation. In addition, formation of oscillatory zonation requires a stagnant environment and would be significantly suppressed in turbulent environments. Our diffusion–reaction model coupled with pH-dependent As adsorption mechanism robustly interpret the formation of As oscillatory zonation in pyrite via a self-organizational process rather than episodic change of bulk composition of hydrothermal fluids. Our model thus provides new insights into the evolution of hydrothermal systems.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"37 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organizational origin of oscillatory zoning in pyrite: A coupled diffusion–reaction model and pH-dependent As adsorption feedback mechanism\",\"authors\":\"Wenhong Johnson Qiu, Mei-Fu Zhou\",\"doi\":\"10.1016/j.gca.2025.05.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pyrite from hydrothermal deposits often exhibits oscillatory zoning, controlling the distribution of trace elements, like As and Au. The origin of this zonal pattern has long been debated between episodic fluid changes and local chemical disequilibrium. Our study of an epithermal Pb-Zn deposit reveals arsenic oscillatory zonation in monocrystalline pyrite grains. Guided by the results of examination and the fact that As can be adsorbed onto pyrite under high pH conditions, inhibiting crystallization, we propose a quantitative diffusion–reaction model to numerically simulate the formation of oscillatory zoning in pyrite. The simulation reveals that in As-bearing supersaturated hydrothermal fluids, pyrite growth consumes HS<ce:sup loc=\\\"post\\\">−</ce:sup> and releases H<ce:sup loc=\\\"post\\\">+</ce:sup>, reducing As adsorption and accelerating crystallization. With Fe<ce:sup loc=\\\"post\\\">2+</ce:sup> on the crystal surface rapidly consumed, growth speed of pyrite is reduced to allow As to be adsorbed and thus to inhibit growth. This cycle restarts as Fe<ce:sup loc=\\\"post\\\">2+</ce:sup> is replenished from the enveloping bulk fluid via diffusion, leading to periodic growth and As adsorption. The formation of As-oscillatory zoning in pyrite is resultant from a fine balance between multiple parameters in environments, including diffusion coefficients (<mml:math altimg=\\\"si10.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> and <mml:math altimg=\\\"si11.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>) and concentrations (<mml:math altimg=\\\"si45.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math>, <mml:math altimg=\\\"si62.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>, <mml:math altimg=\\\"si46.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>) of ions, pH, temperature and hydrodynamic conditions. The simulation reveals that slightly acidic (e.g., pH = ∼4) As-bearing supersaturated epithermal environments (&lt;∼180 °C) with <mml:math altimg=\\\"si62.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math>(e.g., ∼30 mM) higher than <mml:math altimg=\\\"si45.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> (e.g., ∼2 mM) and ratios of <mml:math altimg=\\\"si63.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub><mml:mo stretchy=\\\"false\\\">/</mml:mo><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> lower than 0.3 are favorable for the formation of As-oscillatory zoned pyrite. Various As zonal patterns can be formed under different parameters. The increase of <mml:math altimg=\\\"si63.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub><mml:mo stretchy=\\\"false\\\">/</mml:mo><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> ratios, <mml:math altimg=\\\"si45.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:msub></mml:mrow></mml:math> and <mml:math altimg=\\\"si62.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant=\\\"italic\\\">HS</mml:mi></mml:mrow><mml:mo>-</mml:mo></mml:msup></mml:msub></mml:mrow></mml:math> and decrease of pH in hydrothermal fluids would lead to change of zonation patterns from regular oscillation to damped oscillation and to convergent oscillation. In addition, formation of oscillatory zonation requires a stagnant environment and would be significantly suppressed in turbulent environments. Our diffusion–reaction model coupled with pH-dependent As adsorption mechanism robustly interpret the formation of As oscillatory zonation in pyrite via a self-organizational process rather than episodic change of bulk composition of hydrothermal fluids. Our model thus provides new insights into the evolution of hydrothermal systems.\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2025.05.021\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.05.021","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

热液矿床中的黄铁矿常表现出振荡带,控制了微量元素如As和Au的分布。这种纬向格局的起源长期以来一直在间歇性流体变化和局部化学不平衡之间争论不休。本文对某浅成热液铅锌矿床进行了研究,发现单晶黄铁矿颗粒中存在砷振荡带。根据研究结果和As在高pH条件下可吸附在黄铁矿上抑制结晶的事实,我们提出了一个定量扩散反应模型来数值模拟黄铁矿中振荡区带的形成。模拟结果表明,在含As过饱和热液中,黄铁矿生长消耗HS -,释放H+,减少As吸附,加速结晶。随着晶体表面Fe2+的快速消耗,黄铁矿的生长速度降低,从而使As被吸附,从而抑制生长。当Fe2+通过扩散从包裹体流体中补充时,这个循环重新开始,导致周期性生长和as吸附。黄铁矿as振荡带的形成是多种环境参数的精细平衡的结果,包括扩散系数(DFe2+和DH+)和离子浓度(CFe2+、CHS-、CH+)、pH、温度和水动力条件。模拟结果表明,微酸性(例如pH = ~ 4)含砷过饱和低温环境(< ~ 180℃)与CHS-(例如:(~ 30 mM)比CFe2+(例如~ 2 mM)高,且DFe2+/DH+的比值低于0.3有利于as振荡带状黄铁矿的形成。在不同的参数下可形成不同的地带性格局。热液中DFe2+/DH+比值、CFe2+和CHS-的增加以及pH的降低,会导致热液带的振荡模式由规则振荡转变为阻尼振荡和收敛振荡。此外,振荡带的形成需要一个停滞的环境,在湍流环境中会受到明显的抑制。我们的扩散反应模型与ph依赖的砷吸附机制相结合,有力地解释了黄铁矿中砷振荡带的形成是一个自组织过程,而不是热液流体体成分的偶发变化。因此,我们的模型为热液系统的演化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-organizational origin of oscillatory zoning in pyrite: A coupled diffusion–reaction model and pH-dependent As adsorption feedback mechanism
Pyrite from hydrothermal deposits often exhibits oscillatory zoning, controlling the distribution of trace elements, like As and Au. The origin of this zonal pattern has long been debated between episodic fluid changes and local chemical disequilibrium. Our study of an epithermal Pb-Zn deposit reveals arsenic oscillatory zonation in monocrystalline pyrite grains. Guided by the results of examination and the fact that As can be adsorbed onto pyrite under high pH conditions, inhibiting crystallization, we propose a quantitative diffusion–reaction model to numerically simulate the formation of oscillatory zoning in pyrite. The simulation reveals that in As-bearing supersaturated hydrothermal fluids, pyrite growth consumes HS and releases H+, reducing As adsorption and accelerating crystallization. With Fe2+ on the crystal surface rapidly consumed, growth speed of pyrite is reduced to allow As to be adsorbed and thus to inhibit growth. This cycle restarts as Fe2+ is replenished from the enveloping bulk fluid via diffusion, leading to periodic growth and As adsorption. The formation of As-oscillatory zoning in pyrite is resultant from a fine balance between multiple parameters in environments, including diffusion coefficients (DFe2+ and DH+) and concentrations (CFe2+, CHS-, CH+) of ions, pH, temperature and hydrodynamic conditions. The simulation reveals that slightly acidic (e.g., pH = ∼4) As-bearing supersaturated epithermal environments (<∼180 °C) with CHS-(e.g., ∼30 mM) higher than CFe2+ (e.g., ∼2 mM) and ratios of DFe2+/DH+ lower than 0.3 are favorable for the formation of As-oscillatory zoned pyrite. Various As zonal patterns can be formed under different parameters. The increase of DFe2+/DH+ ratios, CFe2+ and CHS- and decrease of pH in hydrothermal fluids would lead to change of zonation patterns from regular oscillation to damped oscillation and to convergent oscillation. In addition, formation of oscillatory zonation requires a stagnant environment and would be significantly suppressed in turbulent environments. Our diffusion–reaction model coupled with pH-dependent As adsorption mechanism robustly interpret the formation of As oscillatory zonation in pyrite via a self-organizational process rather than episodic change of bulk composition of hydrothermal fluids. Our model thus provides new insights into the evolution of hydrothermal systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信