Cu47Zr47Al6的平衡、过冷液体、玻璃和相应晶体的温度相关比热测量,来自国际空间站的地面和微重力实验

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A.K. Gangopadhyay, K.F. Kelton
{"title":"Cu47Zr47Al6的平衡、过冷液体、玻璃和相应晶体的温度相关比热测量,来自国际空间站的地面和微重力实验","authors":"A.K. Gangopadhyay, K.F. Kelton","doi":"10.1016/j.actamat.2025.121201","DOIUrl":null,"url":null,"abstract":"The temperature dependent specific heat, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;mi is=\"true\"&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2821.7 1196.3\" width=\"6.554ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-70\"></use></g></g><g is=\"true\" transform=\"translate(1338,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use></g><g is=\"true\" transform=\"translate(389,0)\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(1094,0)\"><use xlink:href=\"#MJMAIN-29\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">p</mi></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">T</mi><mo is=\"true\">)</mo></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">p</mi></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">T</mi><mo is=\"true\">)</mo></mrow></mrow></math></script></span>, is one of the most important thermodynamic properties of any material. Although this is routinely measured for glasses near and below the glass transition temperature, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 1024.3 1096.9\" width=\"2.379ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-67\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">g</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">g</mi></msub></math></script></span>, very few experimental data exist for supercooled liquids between <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mi is=\"true\"&gt;g&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -747.2 1024.3 1096.9\" width=\"2.379ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-67\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">g</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">g</mi></msub></math></script></span> and the liquidus temperature, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 895.6 997.6\" width=\"2.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(584,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6C\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">l</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">l</mi></msub></math></script></span>. Such measurements are reported here for a good bulk metallic glass, Cu<sub>47</sub>Zr<sub>47</sub>Al<sub>6</sub>, using conventional calorimetry on earth and modulation calorimetry aboard the International Space Station (ISS) on levitated solid and liquid samples. These data enable a complete thermodynamic characterization of this alloy in the crystal, glass, and the supercooled and equilibrium liquid phases. With these data it is possible to estimate the heat of fusion, driving free energy for crystallization, critical thickness, and fragility of the metallic glass.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent specific heat measurements of equilibrium, supercooled liquid, glass, and the corresponding crystal of Cu47Zr47Al6 from terrestrial and microgravity experiments on the International Space Station\",\"authors\":\"A.K. Gangopadhyay, K.F. Kelton\",\"doi\":\"10.1016/j.actamat.2025.121201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature dependent specific heat, <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;C&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;(&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mo is=\\\"true\\\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 2821.7 1196.3\\\" width=\\\"6.554ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-43\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-70\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1338,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-28\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(389,0)\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1094,0)\\\"><use xlink:href=\\\"#MJMAIN-29\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">C</mi><mi is=\\\"true\\\">p</mi></msub><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">T</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">C</mi><mi is=\\\"true\\\">p</mi></msub><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">T</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></script></span>, is one of the most important thermodynamic properties of any material. Although this is routinely measured for glasses near and below the glass transition temperature, <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;g&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 1024.3 1096.9\\\" width=\\\"2.379ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-67\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">g</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">g</mi></msub></math></script></span>, very few experimental data exist for supercooled liquids between <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;g&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -747.2 1024.3 1096.9\\\" width=\\\"2.379ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-67\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">g</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">g</mi></msub></math></script></span> and the liquidus temperature, <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;l&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -747.2 895.6 997.6\\\" width=\\\"2.08ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(584,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6C\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">l</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">T</mi><mi is=\\\"true\\\">l</mi></msub></math></script></span>. Such measurements are reported here for a good bulk metallic glass, Cu<sub>47</sub>Zr<sub>47</sub>Al<sub>6</sub>, using conventional calorimetry on earth and modulation calorimetry aboard the International Space Station (ISS) on levitated solid and liquid samples. These data enable a complete thermodynamic characterization of this alloy in the crystal, glass, and the supercooled and equilibrium liquid phases. With these data it is possible to estimate the heat of fusion, driving free energy for crystallization, critical thickness, and fragility of the metallic glass.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121201\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

温度相关比热Cp(T)Cp(T)是任何材料最重要的热力学性质之一。虽然这是玻璃转变温度(TgTg)附近和低于玻璃转变温度(TgTg)的玻璃的常规测量,但很少有实验数据存在于TgTg和液相温度(TlTl)之间的过冷液体。本文报道了一种良好的大块金属玻璃Cu47Zr47Al6,使用地球上的传统量热法和国际空间站(ISS)上的调制量热法对悬浮固体和液体样品进行了这种测量。这些数据使该合金在晶体,玻璃,过冷和平衡液相中的完整热力学表征成为可能。有了这些数据,就可以估计熔化热、驱动结晶的自由能、临界厚度和金属玻璃的脆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature dependent specific heat measurements of equilibrium, supercooled liquid, glass, and the corresponding crystal of Cu47Zr47Al6 from terrestrial and microgravity experiments on the International Space Station

Temperature dependent specific heat measurements of equilibrium, supercooled liquid, glass, and the corresponding crystal of Cu47Zr47Al6 from terrestrial and microgravity experiments on the International Space Station
The temperature dependent specific heat, Cp(T), is one of the most important thermodynamic properties of any material. Although this is routinely measured for glasses near and below the glass transition temperature, Tg, very few experimental data exist for supercooled liquids between Tg and the liquidus temperature, Tl. Such measurements are reported here for a good bulk metallic glass, Cu47Zr47Al6, using conventional calorimetry on earth and modulation calorimetry aboard the International Space Station (ISS) on levitated solid and liquid samples. These data enable a complete thermodynamic characterization of this alloy in the crystal, glass, and the supercooled and equilibrium liquid phases. With these data it is possible to estimate the heat of fusion, driving free energy for crystallization, critical thickness, and fragility of the metallic glass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信