小波变换和层次混合匹配增强端到端儿童腕部骨折检测。

Bin Yan, Yuliang Zhang, Qiuming He
{"title":"小波变换和层次混合匹配增强端到端儿童腕部骨折检测。","authors":"Bin Yan, Yuliang Zhang, Qiuming He","doi":"10.1007/s10278-025-01512-8","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing frequency of daily physical activities among children and adolescents, the incidence of wrist fractures has been rising annually. Without precise and prompt diagnosis, these fractures may remain undetected, potentially leading to complications. Recent advancements in computer-aided diagnosis (CAD) technologies have facilitated the development of sophisticated diagnostic tools, which significantly improve the accuracy of fracture detection. To enhance the capability of detecting pediatric wrist fractures, this study presents the WH-DETR model, specifically designed for pediatric wrist fracture detection. WH-DETR is configured as a DEtection TRansformer framework, an end-to-end object detection algorithm that obviates the need for non-maximum suppression post-processing. To further enhance its performance, this study first introduces a wavelet transform projection module to capture different frequency features from the feature maps extracted by the backbone. This module allows the network to effectively capture multi-scale and multi-frequency information, improving the detection of subtle and complex features in medical images. Secondly, this study designs a hierarchical hybrid matching framework that decouples the prediction tasks of different decoder layers during training, thereby improving the final predictive capabilities of the model. The framework improves prediction robustness while maintaining inference efficiency. Extensive experiments on the GRAZPEDWRI-DX dataset demonstrate that our WH-DETR model achieves state-of-the-art performance with only 43 M parameters, attaining an <math><msub><mtext>mAP</mtext> <mn>50</mn></msub> </math> score of 68.8%, an <math><msub><mtext>mAP</mtext> <mrow><mn>50</mn> <mo>-</mo> <mn>90</mn></mrow> </msub> </math> score of 48.3%, and an F1 score of 64.1%. These results represent improvements of 1.78% in <math><msub><mtext>mAP</mtext> <mn>50</mn></msub> </math> , 1.69% in <math><msub><mtext>mAP</mtext> <mrow><mn>50</mn> <mo>-</mo> <mn>90</mn></mrow> </msub> </math> , and 1.75% in F1 score, respectively, over the next best-performing model, highlighting its superior efficiency and robustness in pediatric wrist fracture detection.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet Transform and Hierarchical Hybrid Matching for Enhancing End-to-End Pediatric Wrist Fracture Detection.\",\"authors\":\"Bin Yan, Yuliang Zhang, Qiuming He\",\"doi\":\"10.1007/s10278-025-01512-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing frequency of daily physical activities among children and adolescents, the incidence of wrist fractures has been rising annually. Without precise and prompt diagnosis, these fractures may remain undetected, potentially leading to complications. Recent advancements in computer-aided diagnosis (CAD) technologies have facilitated the development of sophisticated diagnostic tools, which significantly improve the accuracy of fracture detection. To enhance the capability of detecting pediatric wrist fractures, this study presents the WH-DETR model, specifically designed for pediatric wrist fracture detection. WH-DETR is configured as a DEtection TRansformer framework, an end-to-end object detection algorithm that obviates the need for non-maximum suppression post-processing. To further enhance its performance, this study first introduces a wavelet transform projection module to capture different frequency features from the feature maps extracted by the backbone. This module allows the network to effectively capture multi-scale and multi-frequency information, improving the detection of subtle and complex features in medical images. Secondly, this study designs a hierarchical hybrid matching framework that decouples the prediction tasks of different decoder layers during training, thereby improving the final predictive capabilities of the model. The framework improves prediction robustness while maintaining inference efficiency. Extensive experiments on the GRAZPEDWRI-DX dataset demonstrate that our WH-DETR model achieves state-of-the-art performance with only 43 M parameters, attaining an <math><msub><mtext>mAP</mtext> <mn>50</mn></msub> </math> score of 68.8%, an <math><msub><mtext>mAP</mtext> <mrow><mn>50</mn> <mo>-</mo> <mn>90</mn></mrow> </msub> </math> score of 48.3%, and an F1 score of 64.1%. These results represent improvements of 1.78% in <math><msub><mtext>mAP</mtext> <mn>50</mn></msub> </math> , 1.69% in <math><msub><mtext>mAP</mtext> <mrow><mn>50</mn> <mo>-</mo> <mn>90</mn></mrow> </msub> </math> , and 1.75% in F1 score, respectively, over the next best-performing model, highlighting its superior efficiency and robustness in pediatric wrist fracture detection.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01512-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01512-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着儿童和青少年日常体育活动频率的增加,腕部骨折的发病率逐年上升。如果没有准确和及时的诊断,这些骨折可能无法被发现,从而可能导致并发症。计算机辅助诊断(CAD)技术的最新进展促进了复杂诊断工具的发展,大大提高了裂缝检测的准确性。为了提高对儿童腕关节骨折的检测能力,本研究提出了专门针对儿童腕关节骨折检测设计的WH-DETR模型。WH-DETR配置为检测变压器框架,这是一种端到端对象检测算法,无需进行非最大抑制后处理。为了进一步提高其性能,本研究首先引入小波变换投影模块,从主干提取的特征映射中捕获不同频率的特征。该模块使网络能够有效地捕获多尺度、多频率的信息,提高对医学图像中细微、复杂特征的检测。其次,本研究设计了分层混合匹配框架,在训练过程中解耦了不同解码器层的预测任务,从而提高了模型的最终预测能力。该框架在保持推理效率的同时提高了预测的鲁棒性。在grazpedwir - dx数据集上进行的大量实验表明,我们的WH-DETR模型仅使用43个参数即可达到最先进的性能,mAP 50得分为68.8%,mAP 50 - 90得分为48.3%,F1得分为64.1%。这些结果表明,与表现第二好的模型相比,mAP 50、mAP 50 - 90和F1评分分别提高了1.78%、1.69%和1.75%,突出了其在儿童腕部骨折检测方面的卓越效率和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet Transform and Hierarchical Hybrid Matching for Enhancing End-to-End Pediatric Wrist Fracture Detection.

With the increasing frequency of daily physical activities among children and adolescents, the incidence of wrist fractures has been rising annually. Without precise and prompt diagnosis, these fractures may remain undetected, potentially leading to complications. Recent advancements in computer-aided diagnosis (CAD) technologies have facilitated the development of sophisticated diagnostic tools, which significantly improve the accuracy of fracture detection. To enhance the capability of detecting pediatric wrist fractures, this study presents the WH-DETR model, specifically designed for pediatric wrist fracture detection. WH-DETR is configured as a DEtection TRansformer framework, an end-to-end object detection algorithm that obviates the need for non-maximum suppression post-processing. To further enhance its performance, this study first introduces a wavelet transform projection module to capture different frequency features from the feature maps extracted by the backbone. This module allows the network to effectively capture multi-scale and multi-frequency information, improving the detection of subtle and complex features in medical images. Secondly, this study designs a hierarchical hybrid matching framework that decouples the prediction tasks of different decoder layers during training, thereby improving the final predictive capabilities of the model. The framework improves prediction robustness while maintaining inference efficiency. Extensive experiments on the GRAZPEDWRI-DX dataset demonstrate that our WH-DETR model achieves state-of-the-art performance with only 43 M parameters, attaining an mAP 50 score of 68.8%, an mAP 50 - 90 score of 48.3%, and an F1 score of 64.1%. These results represent improvements of 1.78% in mAP 50 , 1.69% in mAP 50 - 90 , and 1.75% in F1 score, respectively, over the next best-performing model, highlighting its superior efficiency and robustness in pediatric wrist fracture detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信