{"title":"深度学习重建算法在超高分辨率CT胰腺囊性肿瘤诊断中的优势。","authors":"Keitaro Sofue, Yoshiko Ueno, Shinji Yabe, Eisuke Ueshima, Takeru Yamaguchi, Atsuhiro Masuda, Arata Sakai, Hirochika Toyama, Takumi Fukumoto, Masatoshi Hori, Takamichi Murakami","doi":"10.1007/s11604-025-01804-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the image quality and clinical utility of a deep learning reconstruction (DLR) algorithm in ultra-high-resolution computed tomography (UHR-CT) for the diagnosis of pancreatic cystic neoplasms (PCNs).</p><p><strong>Methods: </strong>This retrospective study included 45 patients with PCNs between March 2020 and February 2022. Contrast-enhanced UHR-CT images were obtained and reconstructed using DLR and hybrid iterative reconstruction (IR). Image noise and contrast-to-noise ratio (CNR) were measured. Two radiologists assessed the diagnostic performance of the imaging findings associated with PCNs using a 5-point Likert scale. The diagnostic performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC), were calculated. Quantitative and qualitative features were compared between CT with DLR and hybrid IR. Interobserver agreement for qualitative assessments was also analyzed.</p><p><strong>Results: </strong>DLR significantly reduced image noise and increased CNR compared to hybrid IR for all objects (p < 0.001). Radiologists rated DLR images as superior in overall quality, lesion delineation, and vessel conspicuity (p < 0.001). DLR produced higher AUROC values for diagnostic imaging findings (ductal communication: 0.887‒0.938 vs. 0.816‒0.827 and enhanced mural nodule: 0.843‒0.916 vs. 0.785‒0.801), although DLR did not directly improve sensitivity, specificity, and accuracy. Interobserver agreement for qualitative assessments was higher in CT with DLR (κ = 0.69‒0.82 vs. 0.57‒0.73).</p><p><strong>Conclusion: </strong>DLR improved image quality and diagnostic performance by effectively reducing image noise and improving lesion conspicuity in the diagnosis of PCNs on UHR-CT. The DLR demonstrated greater diagnostic confidence for the assessment of imaging findings associated with PCNs.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":"1652-1662"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advantages of deep learning reconstruction algorithm in ultra-high-resolution CT for the diagnosis of pancreatic cystic neoplasm.\",\"authors\":\"Keitaro Sofue, Yoshiko Ueno, Shinji Yabe, Eisuke Ueshima, Takeru Yamaguchi, Atsuhiro Masuda, Arata Sakai, Hirochika Toyama, Takumi Fukumoto, Masatoshi Hori, Takamichi Murakami\",\"doi\":\"10.1007/s11604-025-01804-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to evaluate the image quality and clinical utility of a deep learning reconstruction (DLR) algorithm in ultra-high-resolution computed tomography (UHR-CT) for the diagnosis of pancreatic cystic neoplasms (PCNs).</p><p><strong>Methods: </strong>This retrospective study included 45 patients with PCNs between March 2020 and February 2022. Contrast-enhanced UHR-CT images were obtained and reconstructed using DLR and hybrid iterative reconstruction (IR). Image noise and contrast-to-noise ratio (CNR) were measured. Two radiologists assessed the diagnostic performance of the imaging findings associated with PCNs using a 5-point Likert scale. The diagnostic performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC), were calculated. Quantitative and qualitative features were compared between CT with DLR and hybrid IR. Interobserver agreement for qualitative assessments was also analyzed.</p><p><strong>Results: </strong>DLR significantly reduced image noise and increased CNR compared to hybrid IR for all objects (p < 0.001). Radiologists rated DLR images as superior in overall quality, lesion delineation, and vessel conspicuity (p < 0.001). DLR produced higher AUROC values for diagnostic imaging findings (ductal communication: 0.887‒0.938 vs. 0.816‒0.827 and enhanced mural nodule: 0.843‒0.916 vs. 0.785‒0.801), although DLR did not directly improve sensitivity, specificity, and accuracy. Interobserver agreement for qualitative assessments was higher in CT with DLR (κ = 0.69‒0.82 vs. 0.57‒0.73).</p><p><strong>Conclusion: </strong>DLR improved image quality and diagnostic performance by effectively reducing image noise and improving lesion conspicuity in the diagnosis of PCNs on UHR-CT. The DLR demonstrated greater diagnostic confidence for the assessment of imaging findings associated with PCNs.</p>\",\"PeriodicalId\":14691,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":\" \",\"pages\":\"1652-1662\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-025-01804-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01804-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Advantages of deep learning reconstruction algorithm in ultra-high-resolution CT for the diagnosis of pancreatic cystic neoplasm.
Purpose: This study aimed to evaluate the image quality and clinical utility of a deep learning reconstruction (DLR) algorithm in ultra-high-resolution computed tomography (UHR-CT) for the diagnosis of pancreatic cystic neoplasms (PCNs).
Methods: This retrospective study included 45 patients with PCNs between March 2020 and February 2022. Contrast-enhanced UHR-CT images were obtained and reconstructed using DLR and hybrid iterative reconstruction (IR). Image noise and contrast-to-noise ratio (CNR) were measured. Two radiologists assessed the diagnostic performance of the imaging findings associated with PCNs using a 5-point Likert scale. The diagnostic performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC), were calculated. Quantitative and qualitative features were compared between CT with DLR and hybrid IR. Interobserver agreement for qualitative assessments was also analyzed.
Results: DLR significantly reduced image noise and increased CNR compared to hybrid IR for all objects (p < 0.001). Radiologists rated DLR images as superior in overall quality, lesion delineation, and vessel conspicuity (p < 0.001). DLR produced higher AUROC values for diagnostic imaging findings (ductal communication: 0.887‒0.938 vs. 0.816‒0.827 and enhanced mural nodule: 0.843‒0.916 vs. 0.785‒0.801), although DLR did not directly improve sensitivity, specificity, and accuracy. Interobserver agreement for qualitative assessments was higher in CT with DLR (κ = 0.69‒0.82 vs. 0.57‒0.73).
Conclusion: DLR improved image quality and diagnostic performance by effectively reducing image noise and improving lesion conspicuity in the diagnosis of PCNs on UHR-CT. The DLR demonstrated greater diagnostic confidence for the assessment of imaging findings associated with PCNs.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.