XBP1下调通过抑制IL-17信号通路缓解牙周炎的焦亡和促进Th17/Treg失衡

IF 4.5 2区 医学 Q2 CELL BIOLOGY
Lixun Kang, Binglu Shi, Siyu Shen, Kai Ma, Yuanxu Jing, Qi An, Yan Dai
{"title":"XBP1下调通过抑制IL-17信号通路缓解牙周炎的焦亡和促进Th17/Treg失衡","authors":"Lixun Kang, Binglu Shi, Siyu Shen, Kai Ma, Yuanxu Jing, Qi An, Yan Dai","doi":"10.1007/s10753-025-02316-2","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a long-lasting inflammatory condition that significantly affects people's quality of life. This research focused on examining the function and underlying mechanisms of X-box binding protein 1 (XBP1) in the pathogenesis of periodontitis. In vitro and in vivo models of periodontitis were established using lipopolysaccharide (LPS). The viability and apoptosis of periodontal ligament stem cells (PDLSCs) were assessed using the Cell Counting Kit-8 and flow cytometry assays, respectively. Reverse transcription-quantitative PCR, western blot, and enzyme-linked immunosorbent assays were employed to measure the levels of inflammatory factors and mediators associated with T helper 17 (Th17)/regulatory T cell (Treg) balance, pyroptosis, and the interleukin-17 (IL-17) pathway. Histological and immunohistochemical analyses were conducted to evaluate tissue damage and bone resorption markers. The IL-17 pathway was activated with SR0987 to explore the interactions between XBP1 and IL-17 signaling. XBP1 knockdown reduced apoptosis, pyroptosis, and inflammation, as indicated by lower levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-18) and pyroptosis-related proteins (ASC, GSDMD-N, NLRP3). XBP1 knockdown alleviated tissue damage, inflammatory cell infiltration, and bone destruction in rat models of periodontitis. XBP1 knockdown notably restored the Th17/Treg imbalance by suppressing Th17 differentiation and promoting Treg differentiation. Mechanistically, XBP1 knockdown inhibited the IL-17 signaling pathway, and IL-17Activator SR0987 significantly reversed the beneficial effects of XBP1 knockdown on periodontitis. XBP1 knockdown alleviated periodontitis by inhibiting the IL-17 signaling pathway, implying that XBP1 could serve as a promising therapeutic target for managing periodontal conditions.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XBP1 Knockdown Alleviates Pyroptosis and Promotes Th17/Treg Imbalance in Periodontitis by Inhibiting the IL-17 Signaling Pathway.\",\"authors\":\"Lixun Kang, Binglu Shi, Siyu Shen, Kai Ma, Yuanxu Jing, Qi An, Yan Dai\",\"doi\":\"10.1007/s10753-025-02316-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodontitis is a long-lasting inflammatory condition that significantly affects people's quality of life. This research focused on examining the function and underlying mechanisms of X-box binding protein 1 (XBP1) in the pathogenesis of periodontitis. In vitro and in vivo models of periodontitis were established using lipopolysaccharide (LPS). The viability and apoptosis of periodontal ligament stem cells (PDLSCs) were assessed using the Cell Counting Kit-8 and flow cytometry assays, respectively. Reverse transcription-quantitative PCR, western blot, and enzyme-linked immunosorbent assays were employed to measure the levels of inflammatory factors and mediators associated with T helper 17 (Th17)/regulatory T cell (Treg) balance, pyroptosis, and the interleukin-17 (IL-17) pathway. Histological and immunohistochemical analyses were conducted to evaluate tissue damage and bone resorption markers. The IL-17 pathway was activated with SR0987 to explore the interactions between XBP1 and IL-17 signaling. XBP1 knockdown reduced apoptosis, pyroptosis, and inflammation, as indicated by lower levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-18) and pyroptosis-related proteins (ASC, GSDMD-N, NLRP3). XBP1 knockdown alleviated tissue damage, inflammatory cell infiltration, and bone destruction in rat models of periodontitis. XBP1 knockdown notably restored the Th17/Treg imbalance by suppressing Th17 differentiation and promoting Treg differentiation. Mechanistically, XBP1 knockdown inhibited the IL-17 signaling pathway, and IL-17Activator SR0987 significantly reversed the beneficial effects of XBP1 knockdown on periodontitis. XBP1 knockdown alleviated periodontitis by inhibiting the IL-17 signaling pathway, implying that XBP1 could serve as a promising therapeutic target for managing periodontal conditions.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02316-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02316-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牙周炎是一种长期的炎症,严重影响人们的生活质量。本研究旨在探讨X-box结合蛋白1 (XBP1)在牙周炎发病中的作用及其机制。采用脂多糖(LPS)建立牙周炎体外和体内模型。分别采用细胞计数试剂盒-8和流式细胞术检测牙周韧带干细胞(PDLSCs)的活力和凋亡情况。采用逆转录定量PCR、western blot和酶联免疫吸附法检测与辅助性T细胞(Th17)/调节性T细胞(Treg)平衡、焦亡和白细胞介素-17 (IL-17)途径相关的炎症因子和介质的水平。组织病理学和免疫组织化学分析评估组织损伤和骨吸收标志物。SR0987激活IL-17通路,探索XBP1与IL-17信号传导之间的相互作用。通过降低促炎细胞因子(TNF-α、IL-6、IL-1β、IL-18)和焦亡相关蛋白(ASC、GSDMD-N、NLRP3)的水平,XBP1敲低可减少细胞凋亡、焦亡和炎症。XBP1基因敲低可减轻牙周炎大鼠模型的组织损伤、炎症细胞浸润和骨破坏。XBP1的敲除通过抑制Th17分化和促进Treg分化,明显恢复了Th17/Treg失衡。机制上,XBP1敲低抑制了IL-17信号通路,IL-17Activator SR0987显著逆转了XBP1敲低对牙周炎的有益作用。XBP1基因敲低可以通过抑制IL-17信号通路来缓解牙周炎,这意味着XBP1可能是治疗牙周疾病的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XBP1 Knockdown Alleviates Pyroptosis and Promotes Th17/Treg Imbalance in Periodontitis by Inhibiting the IL-17 Signaling Pathway.

Periodontitis is a long-lasting inflammatory condition that significantly affects people's quality of life. This research focused on examining the function and underlying mechanisms of X-box binding protein 1 (XBP1) in the pathogenesis of periodontitis. In vitro and in vivo models of periodontitis were established using lipopolysaccharide (LPS). The viability and apoptosis of periodontal ligament stem cells (PDLSCs) were assessed using the Cell Counting Kit-8 and flow cytometry assays, respectively. Reverse transcription-quantitative PCR, western blot, and enzyme-linked immunosorbent assays were employed to measure the levels of inflammatory factors and mediators associated with T helper 17 (Th17)/regulatory T cell (Treg) balance, pyroptosis, and the interleukin-17 (IL-17) pathway. Histological and immunohistochemical analyses were conducted to evaluate tissue damage and bone resorption markers. The IL-17 pathway was activated with SR0987 to explore the interactions between XBP1 and IL-17 signaling. XBP1 knockdown reduced apoptosis, pyroptosis, and inflammation, as indicated by lower levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-18) and pyroptosis-related proteins (ASC, GSDMD-N, NLRP3). XBP1 knockdown alleviated tissue damage, inflammatory cell infiltration, and bone destruction in rat models of periodontitis. XBP1 knockdown notably restored the Th17/Treg imbalance by suppressing Th17 differentiation and promoting Treg differentiation. Mechanistically, XBP1 knockdown inhibited the IL-17 signaling pathway, and IL-17Activator SR0987 significantly reversed the beneficial effects of XBP1 knockdown on periodontitis. XBP1 knockdown alleviated periodontitis by inhibiting the IL-17 signaling pathway, implying that XBP1 could serve as a promising therapeutic target for managing periodontal conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信