Josep Fita-Torró, José Luis Garrido-Huarte, Lucía López-Gil, Agnès H Michel, Benoit Kornmann, Amparo Pascual-Ahuir, Markus Proft
{"title":"促凋亡脂质对线粒体蛋白质输入和蛋白质停滞的抑制作用。","authors":"Josep Fita-Torró, José Luis Garrido-Huarte, Lucía López-Gil, Agnès H Michel, Benoit Kornmann, Amparo Pascual-Ahuir, Markus Proft","doi":"10.7554/eLife.93621","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of mitochondrial protein import and proteostasis by a pro-apoptotic lipid.\",\"authors\":\"Josep Fita-Torró, José Luis Garrido-Huarte, Lucía López-Gil, Agnès H Michel, Benoit Kornmann, Amparo Pascual-Ahuir, Markus Proft\",\"doi\":\"10.7554/eLife.93621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.93621\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.93621","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Inhibition of mitochondrial protein import and proteostasis by a pro-apoptotic lipid.
Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.