集成多模态层次融合和元学习增强分子性质预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xianjun Han, Zhenglong Zhang, Can Bai, Zijian Wu
{"title":"集成多模态层次融合和元学习增强分子性质预测。","authors":"Xianjun Han, Zhenglong Zhang, Can Bai, Zijian Wu","doi":"10.1093/bib/bbaf251","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated multimodal hierarchical fusion and meta-learning for enhanced molecular property prediction.\",\"authors\":\"Xianjun Han, Zhenglong Zhang, Can Bai, Zijian Wu\",\"doi\":\"10.1093/bib/bbaf251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf251\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf251","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测分子的药理学和毒理学特性是药物开发过程中的关键一步。由于分子性质预测任务的异质性,目前大多数方法依赖于建立基本模型并对其进行微调以解决特定性质。然而,构建一个高质量的基础模型是一个耗时的过程,并且需要精心设计网络架构;此外,在某些罕见的分子性质预测任务中,基础模型往往不能很好地迁移到新的任务中。在这项工作中,我们采用了基于元学习的训练框架,使我们的模型能够适应有限数据下的各种任务,从而防止数据稀缺影响某些分子性质预测。此外,该框架利用不同任务之间的相关性,允许构建的模型快速适应新的预测任务。此外,我们提出了一个结合二维分子图和分子图像的多模态融合框架。在分子图中,节点级、基序级和图级特征从低到高分层引导,充分利用分子表征,更有效地进行分层融合。实验结果表明,我们的模型在各种性能指标上优于基线模型,从而验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated multimodal hierarchical fusion and meta-learning for enhanced molecular property prediction.

Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信