肿瘤微环境中的乳酸化与免疫治疗耐药性:新的机制和挑战。

IF 9.1 1区 医学 Q1 ONCOLOGY
Wenlong Zhu , Chang Fan , Yizhuo Hou, Yanjie Zhang
{"title":"肿瘤微环境中的乳酸化与免疫治疗耐药性:新的机制和挑战。","authors":"Wenlong Zhu ,&nbsp;Chang Fan ,&nbsp;Yizhuo Hou,&nbsp;Yanjie Zhang","doi":"10.1016/j.canlet.2025.217835","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor microenvironment (TME) is a highly intricate and variable system. The Warburg effect has made researchers further realize that TME is a highly hypoxic microenvironment. Currently, it is reported that lactate is not merely a metabolic waste but also serves important biological functions, which provides a large number of reaction substrates for lactylation. Post-translational modification (PTM) is crucial for signaling and physiological regulation in both normal and cancer cells. Various PTMs play pathological roles in tumor proliferation, metabolism, and the remodeling of the tumor immunosuppressive microenvironment (TIME). Lactylation, as a newly reported PTM, plays an important role in shaping TIME and aggravating tumor immunotherapy resistance. Numerous studies have demonstrated that histone lactylation can directly stimulate gene transcription within chromatin, thereby contributing to tumor promotion and diminishing the efficacy of therapeutic agents against tumors. Advancements in multi-omics technology enable researchers to investigate lactylation-related substrates more effectively. By precisely targeting these sites, it is possible to reduce histone lactylation in order to mitigate their effects on tumor immune resistance. Despite the existence of numerous studies, there remains a notable deficiency of systematic reviews in this field. Therefore, this review focuses on the novel mechanisms of lactylation that promote tumor progression and its impact on tumor immune resistance. Finally, we propose relevant therapeutic regimens for reversing lactylation to guide tumor combined therapy, thus providing benefits upon more patients with tumor immune resistance.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"627 ","pages":"Article 217835"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactylation in tumor microenvironment and immunotherapy resistance: New mechanisms and challenges\",\"authors\":\"Wenlong Zhu ,&nbsp;Chang Fan ,&nbsp;Yizhuo Hou,&nbsp;Yanjie Zhang\",\"doi\":\"10.1016/j.canlet.2025.217835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tumor microenvironment (TME) is a highly intricate and variable system. The Warburg effect has made researchers further realize that TME is a highly hypoxic microenvironment. Currently, it is reported that lactate is not merely a metabolic waste but also serves important biological functions, which provides a large number of reaction substrates for lactylation. Post-translational modification (PTM) is crucial for signaling and physiological regulation in both normal and cancer cells. Various PTMs play pathological roles in tumor proliferation, metabolism, and the remodeling of the tumor immunosuppressive microenvironment (TIME). Lactylation, as a newly reported PTM, plays an important role in shaping TIME and aggravating tumor immunotherapy resistance. Numerous studies have demonstrated that histone lactylation can directly stimulate gene transcription within chromatin, thereby contributing to tumor promotion and diminishing the efficacy of therapeutic agents against tumors. Advancements in multi-omics technology enable researchers to investigate lactylation-related substrates more effectively. By precisely targeting these sites, it is possible to reduce histone lactylation in order to mitigate their effects on tumor immune resistance. Despite the existence of numerous studies, there remains a notable deficiency of systematic reviews in this field. Therefore, this review focuses on the novel mechanisms of lactylation that promote tumor progression and its impact on tumor immune resistance. Finally, we propose relevant therapeutic regimens for reversing lactylation to guide tumor combined therapy, thus providing benefits upon more patients with tumor immune resistance.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"627 \",\"pages\":\"Article 217835\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525004021\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525004021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤微环境是一个高度复杂多变的系统。Warburg效应使研究者进一步认识到TME是一个高度缺氧的微环境。目前,有报道称乳酸不仅是一种代谢废物,而且具有重要的生物学功能,为乳酸化提供了大量的反应底物。翻译后修饰(PTM)在正常细胞和癌细胞的信号和生理调节中都是至关重要的。多种ptm在肿瘤增殖、代谢和肿瘤免疫抑制微环境(TIME)重塑中发挥病理作用。乳酸酰化作为一种新发现的PTM,在形成TIME和加重肿瘤免疫治疗抵抗中起着重要作用。大量研究表明,组蛋白乳酸化可以直接刺激染色质内的基因转录,从而促进肿瘤发展,降低肿瘤治疗剂的疗效。多组学技术的进步使研究人员能够更有效地研究乳酸化相关底物。通过精确靶向这些位点,有可能减少组蛋白乳酸化,以减轻其对肿瘤免疫抵抗的影响。尽管有大量的研究,但该领域的系统综述仍显着不足。因此,本文就乳酸化促进肿瘤进展的新机制及其对肿瘤免疫抵抗的影响进行综述。最后,我们提出逆转乳酸化的相关治疗方案,指导肿瘤联合治疗,从而使更多的肿瘤免疫抵抗患者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactylation in tumor microenvironment and immunotherapy resistance: New mechanisms and challenges
Tumor microenvironment (TME) is a highly intricate and variable system. The Warburg effect has made researchers further realize that TME is a highly hypoxic microenvironment. Currently, it is reported that lactate is not merely a metabolic waste but also serves important biological functions, which provides a large number of reaction substrates for lactylation. Post-translational modification (PTM) is crucial for signaling and physiological regulation in both normal and cancer cells. Various PTMs play pathological roles in tumor proliferation, metabolism, and the remodeling of the tumor immunosuppressive microenvironment (TIME). Lactylation, as a newly reported PTM, plays an important role in shaping TIME and aggravating tumor immunotherapy resistance. Numerous studies have demonstrated that histone lactylation can directly stimulate gene transcription within chromatin, thereby contributing to tumor promotion and diminishing the efficacy of therapeutic agents against tumors. Advancements in multi-omics technology enable researchers to investigate lactylation-related substrates more effectively. By precisely targeting these sites, it is possible to reduce histone lactylation in order to mitigate their effects on tumor immune resistance. Despite the existence of numerous studies, there remains a notable deficiency of systematic reviews in this field. Therefore, this review focuses on the novel mechanisms of lactylation that promote tumor progression and its impact on tumor immune resistance. Finally, we propose relevant therapeutic regimens for reversing lactylation to guide tumor combined therapy, thus providing benefits upon more patients with tumor immune resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信