{"title":"生物医学数据自学习进化方法驱动的穷举双聚类","authors":"Adrián Segura-Ortiz , Adán José-García , Laetitia Jourdan , José García-Nieto","doi":"10.1016/j.cmpb.2025.108846","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data.</div></div><div><h3>Methods:</h3><div>MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: <span><span>https://github.com/AdrianSeguraOrtiz/MOEBA-BIO</span><svg><path></path></svg></span>.</div></div><div><h3>Results:</h3><div>Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques.</div></div><div><h3>Conclusions:</h3><div>MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"269 ","pages":"Article 108846"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data\",\"authors\":\"Adrián Segura-Ortiz , Adán José-García , Laetitia Jourdan , José García-Nieto\",\"doi\":\"10.1016/j.cmpb.2025.108846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data.</div></div><div><h3>Methods:</h3><div>MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: <span><span>https://github.com/AdrianSeguraOrtiz/MOEBA-BIO</span><svg><path></path></svg></span>.</div></div><div><h3>Results:</h3><div>Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques.</div></div><div><h3>Conclusions:</h3><div>MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"269 \",\"pages\":\"Article 108846\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725002639\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725002639","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data
Background and Objective:
Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data.
Methods:
MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: https://github.com/AdrianSeguraOrtiz/MOEBA-BIO.
Results:
Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques.
Conclusions:
MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.