{"title":"基于强化学习的变分序贯优化实验设计","authors":"Wanggang Shen, Jiayuan Dong, Xun Huan","doi":"10.1016/j.cma.2025.118068","DOIUrl":null,"url":null,"abstract":"<div><div>We present variational sequential optimal experimental design (vsOED), a novel method for optimally designing a finite sequence of experiments within a Bayesian framework with information-theoretic criteria. vsOED employs a one-point reward formulation with variational posterior approximations, providing a provable lower bound to the expected information gain. Numerical methods are developed following an actor–critic reinforcement learning approach, including derivation and estimation of variational and policy gradients to optimize the design policy, and posterior approximation using Gaussian mixture models and normalizing flows. vsOED accommodates nuisance parameters, implicit likelihoods, and multiple candidate models, while supporting flexible design criteria that can target designs for model discrimination, parameter inference, goal-oriented prediction, and their weighted combinations. We demonstrate vsOED across various engineering and science applications, illustrating its superior sample efficiency compared to existing sequential experimental design algorithms.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118068"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational sequential optimal experimental design using reinforcement learning\",\"authors\":\"Wanggang Shen, Jiayuan Dong, Xun Huan\",\"doi\":\"10.1016/j.cma.2025.118068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present variational sequential optimal experimental design (vsOED), a novel method for optimally designing a finite sequence of experiments within a Bayesian framework with information-theoretic criteria. vsOED employs a one-point reward formulation with variational posterior approximations, providing a provable lower bound to the expected information gain. Numerical methods are developed following an actor–critic reinforcement learning approach, including derivation and estimation of variational and policy gradients to optimize the design policy, and posterior approximation using Gaussian mixture models and normalizing flows. vsOED accommodates nuisance parameters, implicit likelihoods, and multiple candidate models, while supporting flexible design criteria that can target designs for model discrimination, parameter inference, goal-oriented prediction, and their weighted combinations. We demonstrate vsOED across various engineering and science applications, illustrating its superior sample efficiency compared to existing sequential experimental design algorithms.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"444 \",\"pages\":\"Article 118068\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003408\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003408","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Variational sequential optimal experimental design using reinforcement learning
We present variational sequential optimal experimental design (vsOED), a novel method for optimally designing a finite sequence of experiments within a Bayesian framework with information-theoretic criteria. vsOED employs a one-point reward formulation with variational posterior approximations, providing a provable lower bound to the expected information gain. Numerical methods are developed following an actor–critic reinforcement learning approach, including derivation and estimation of variational and policy gradients to optimize the design policy, and posterior approximation using Gaussian mixture models and normalizing flows. vsOED accommodates nuisance parameters, implicit likelihoods, and multiple candidate models, while supporting flexible design criteria that can target designs for model discrimination, parameter inference, goal-oriented prediction, and their weighted combinations. We demonstrate vsOED across various engineering and science applications, illustrating its superior sample efficiency compared to existing sequential experimental design algorithms.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.