多元空间条件u分位数:一种Bahadur-Kiefer表示

IF 1.3 Q2 MATHEMATICS, APPLIED
Salim Bouzebda, Nourelhouda Taachouche
{"title":"多元空间条件u分位数:一种Bahadur-Kiefer表示","authors":"Salim Bouzebda,&nbsp;Nourelhouda Taachouche","doi":"10.1016/j.rinam.2025.100593","DOIUrl":null,"url":null,"abstract":"<div><div>Quantiles constitute a core concept in probability theory and theoretical statistics, providing an indispensable instrument in a wide array of applications. Although the univariate notion of quantiles is intuitively clear and mathematically well established, extending this concept to a multivariate framework poses significant theoretical and practical challenges. A well-established approach to extending univariate quantiles to the multivariate setting is the <em>spatial</em> (or <em>geometric</em>) framework, whose empirical counterparts exhibit notable robustness and admit an elegant Bahadur–Kiefer representation. Independently, another generalization of univariate quantiles leads to <span><math><mi>U</mi></math></span><em>-quantiles</em>, which naturally encompass classical estimators such as the Hodges–Lehmann estimator for a central tendency. In this study, we bridge these perspectives by introducing <em>multivariate conditional spatial</em> <span><math><mi>U</mi></math></span><em>-quantiles</em> and deriving their corresponding Bahadur–Kiefer representation. This representation enables us to establish fundamental theoretical properties, including weak convergence and a law of the iterated logarithm. These results are proved under some standard structural conditions on the Vapnik–Chervonenkis classes of functions and some mild conditions on the model. The uniform limit theorems discussed in this paper are key tools for further developments in data analysis involving empirical process techniques.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100593"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate spatial conditional U-quantiles: a Bahadur–Kiefer representation\",\"authors\":\"Salim Bouzebda,&nbsp;Nourelhouda Taachouche\",\"doi\":\"10.1016/j.rinam.2025.100593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantiles constitute a core concept in probability theory and theoretical statistics, providing an indispensable instrument in a wide array of applications. Although the univariate notion of quantiles is intuitively clear and mathematically well established, extending this concept to a multivariate framework poses significant theoretical and practical challenges. A well-established approach to extending univariate quantiles to the multivariate setting is the <em>spatial</em> (or <em>geometric</em>) framework, whose empirical counterparts exhibit notable robustness and admit an elegant Bahadur–Kiefer representation. Independently, another generalization of univariate quantiles leads to <span><math><mi>U</mi></math></span><em>-quantiles</em>, which naturally encompass classical estimators such as the Hodges–Lehmann estimator for a central tendency. In this study, we bridge these perspectives by introducing <em>multivariate conditional spatial</em> <span><math><mi>U</mi></math></span><em>-quantiles</em> and deriving their corresponding Bahadur–Kiefer representation. This representation enables us to establish fundamental theoretical properties, including weak convergence and a law of the iterated logarithm. These results are proved under some standard structural conditions on the Vapnik–Chervonenkis classes of functions and some mild conditions on the model. The uniform limit theorems discussed in this paper are key tools for further developments in data analysis involving empirical process techniques.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100593\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

分位数是概率论和理论统计学中的一个核心概念,在广泛的应用中是不可或缺的工具。尽管分位数的单变量概念在直观上是清晰的,并且在数学上得到了很好的建立,但将这一概念扩展到多变量框架会带来重大的理论和实践挑战。将单变量分位数扩展到多变量设置的一种行之有效的方法是空间(或几何)框架,其经验对应物表现出显著的鲁棒性,并承认一个优雅的bahadurr - kiefer表示。独立地,单变量分位数的另一种推广导致u分位数,它自然包含经典估计量,如集中趋势的Hodges-Lehmann估计量。在本研究中,我们通过引入多变量条件空间u分位数并推导其相应的bahadurr - kiefer表示来弥合这些观点。这种表示使我们能够建立基本的理论性质,包括弱收敛性和迭代对数定律。这些结果在Vapnik-Chervonenkis类函数的一些标准结构条件和模型的一些温和条件下得到了证明。本文讨论的一致极限定理是进一步发展涉及经验过程技术的数据分析的关键工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate spatial conditional U-quantiles: a Bahadur–Kiefer representation
Quantiles constitute a core concept in probability theory and theoretical statistics, providing an indispensable instrument in a wide array of applications. Although the univariate notion of quantiles is intuitively clear and mathematically well established, extending this concept to a multivariate framework poses significant theoretical and practical challenges. A well-established approach to extending univariate quantiles to the multivariate setting is the spatial (or geometric) framework, whose empirical counterparts exhibit notable robustness and admit an elegant Bahadur–Kiefer representation. Independently, another generalization of univariate quantiles leads to U-quantiles, which naturally encompass classical estimators such as the Hodges–Lehmann estimator for a central tendency. In this study, we bridge these perspectives by introducing multivariate conditional spatial U-quantiles and deriving their corresponding Bahadur–Kiefer representation. This representation enables us to establish fundamental theoretical properties, including weak convergence and a law of the iterated logarithm. These results are proved under some standard structural conditions on the Vapnik–Chervonenkis classes of functions and some mild conditions on the model. The uniform limit theorems discussed in this paper are key tools for further developments in data analysis involving empirical process techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信