铜基和锡基中熵合金氧化物制氢与废聚对苯二甲酸乙二醇酯(PET)升级回收的比较

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xinjie Xie , Shilong Zhou , Chunyong Zhang , Shuang Dong , Zhou Yang
{"title":"铜基和锡基中熵合金氧化物制氢与废聚对苯二甲酸乙二醇酯(PET)升级回收的比较","authors":"Xinjie Xie ,&nbsp;Shilong Zhou ,&nbsp;Chunyong Zhang ,&nbsp;Shuang Dong ,&nbsp;Zhou Yang","doi":"10.1016/j.jcis.2025.138018","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic water splitting for hydrogen production presents a promising solution to the global energy crisis. The high-value recycling and utilization of waste polyethylene terephthalate (PET) presents an environmental-friendly solution to address the “white pollution” caused by plastics. How to link the two reactions? Significantly, in a PET hydrolysate solution, the hydrogen evolution reaction (HER) occurs at the cathode, while the ethylene glycol oxidative reaction (EGOR) occurs at the anode, producing hydrogen and formic acid (FA), respectively. The design of electrocatalyst is the key point. Herein, we synthesised and evaluated three copper (Cu) and tin (Sn)-based medium-entropy alloy oxides (MEAOs): Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub>, Cu<sub>0.5</sub>Ga<sub>0.5</sub>SnO<sub>3.25</sub> and Cu<sub>0.5</sub>Ni<sub>0.5</sub>SnO<sub>3</sub>. Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> showed the most favourable electrochemical performance, with an HER overpotential of 181 mV at 10 mA cm<sup>−2</sup> and a low cell voltage of 1.26 V. Its electrochemical performance was better than that of the commercial RuO<sub>2</sub> + Pt/C system. Besides, Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> efficiently converts EG to FA, achieving a Faradaic efficiency (<em>FE</em>) of 97.7 % at 1.6 V, slightly surpassing the performances of Cu<sub>0.5</sub>Ni<sub>0.5</sub>SnO<sub>3</sub> and Cu<sub>0.5</sub>Ga<sub>0.5</sub>SnO<sub>3.25</sub> MEAOs. Density functional theory (DFT) reveals that the Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> possesses a d-band center that is closer to the Fermi level, and the Co 3d orbit has the most contribution to the density of state (DOS), reflecting more synergetic effect in the Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"698 ","pages":"Article 138018"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing copper and tin-based medium-entropy alloy oxide for producing hydrogen linking to waste polyethylene terephthalate (PET) upcycling\",\"authors\":\"Xinjie Xie ,&nbsp;Shilong Zhou ,&nbsp;Chunyong Zhang ,&nbsp;Shuang Dong ,&nbsp;Zhou Yang\",\"doi\":\"10.1016/j.jcis.2025.138018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocatalytic water splitting for hydrogen production presents a promising solution to the global energy crisis. The high-value recycling and utilization of waste polyethylene terephthalate (PET) presents an environmental-friendly solution to address the “white pollution” caused by plastics. How to link the two reactions? Significantly, in a PET hydrolysate solution, the hydrogen evolution reaction (HER) occurs at the cathode, while the ethylene glycol oxidative reaction (EGOR) occurs at the anode, producing hydrogen and formic acid (FA), respectively. The design of electrocatalyst is the key point. Herein, we synthesised and evaluated three copper (Cu) and tin (Sn)-based medium-entropy alloy oxides (MEAOs): Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub>, Cu<sub>0.5</sub>Ga<sub>0.5</sub>SnO<sub>3.25</sub> and Cu<sub>0.5</sub>Ni<sub>0.5</sub>SnO<sub>3</sub>. Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> showed the most favourable electrochemical performance, with an HER overpotential of 181 mV at 10 mA cm<sup>−2</sup> and a low cell voltage of 1.26 V. Its electrochemical performance was better than that of the commercial RuO<sub>2</sub> + Pt/C system. Besides, Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> efficiently converts EG to FA, achieving a Faradaic efficiency (<em>FE</em>) of 97.7 % at 1.6 V, slightly surpassing the performances of Cu<sub>0.5</sub>Ni<sub>0.5</sub>SnO<sub>3</sub> and Cu<sub>0.5</sub>Ga<sub>0.5</sub>SnO<sub>3.25</sub> MEAOs. Density functional theory (DFT) reveals that the Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub> possesses a d-band center that is closer to the Fermi level, and the Co 3d orbit has the most contribution to the density of state (DOS), reflecting more synergetic effect in the Cu<sub>0.5</sub>Co<sub>0.5</sub>SnO<sub>3.17</sub>.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"698 \",\"pages\":\"Article 138018\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725014092\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725014092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化水裂解制氢是解决全球能源危机的一种很有前途的方法。废弃PET(聚对苯二甲酸乙二醇酯)的高价值回收利用为解决塑料造成的“白色污染”提供了一种环保的解决方案。如何把这两个反应联系起来?值得注意的是,在PET水解液中,析氢反应(HER)发生在阴极,乙二醇氧化反应(EGOR)发生在阳极,分别产生氢和甲酸(FA)。电催化剂的设计是关键。在此,我们合成并评价了三种铜(Cu)和锡(Sn)基中熵合金氧化物(MEAOs): Cu0.5Co0.5SnO3.17, Cu0.5Ga0.5SnO3.25和Cu0.5Ni0.5SnO3。Cu0.5Co0.5SnO3.17的电化学性能最好,在10 mA cm−2下的HER过电位为181 mV,电池电压低至1.26 V。其电化学性能优于商用RuO2 + Pt/C体系。此外,Cu0.5Co0.5SnO3.17有效地将EG转化为FA,在1.6 V下达到97.7%的法拉第效率(FE),略高于Cu0.5Ni0.5SnO3和Cu0.5Ga0.5SnO3.25 MEAOs的性能。密度泛函理论(DFT)表明,Cu0.5Co0.5SnO3.17具有一个更接近费米能级的d波段中心,而Co 3d轨道对态密度(DOS)的贡献最大,在Cu0.5Co0.5SnO3.17中反映出更强的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing copper and tin-based medium-entropy alloy oxide for producing hydrogen linking to waste polyethylene terephthalate (PET) upcycling
Electrocatalytic water splitting for hydrogen production presents a promising solution to the global energy crisis. The high-value recycling and utilization of waste polyethylene terephthalate (PET) presents an environmental-friendly solution to address the “white pollution” caused by plastics. How to link the two reactions? Significantly, in a PET hydrolysate solution, the hydrogen evolution reaction (HER) occurs at the cathode, while the ethylene glycol oxidative reaction (EGOR) occurs at the anode, producing hydrogen and formic acid (FA), respectively. The design of electrocatalyst is the key point. Herein, we synthesised and evaluated three copper (Cu) and tin (Sn)-based medium-entropy alloy oxides (MEAOs): Cu0.5Co0.5SnO3.17, Cu0.5Ga0.5SnO3.25 and Cu0.5Ni0.5SnO3. Cu0.5Co0.5SnO3.17 showed the most favourable electrochemical performance, with an HER overpotential of 181 mV at 10 mA cm−2 and a low cell voltage of 1.26 V. Its electrochemical performance was better than that of the commercial RuO2 + Pt/C system. Besides, Cu0.5Co0.5SnO3.17 efficiently converts EG to FA, achieving a Faradaic efficiency (FE) of 97.7 % at 1.6 V, slightly surpassing the performances of Cu0.5Ni0.5SnO3 and Cu0.5Ga0.5SnO3.25 MEAOs. Density functional theory (DFT) reveals that the Cu0.5Co0.5SnO3.17 possesses a d-band center that is closer to the Fermi level, and the Co 3d orbit has the most contribution to the density of state (DOS), reflecting more synergetic effect in the Cu0.5Co0.5SnO3.17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信