金红石岩石年代学和钛同位素组成记录了大陆俯冲带熔体-流体-岩石的多次相互作用

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xiaojia Jiang , Xin Chen , Hans-Peter Schertl , Liam Hoare , Aitor Cambeses , David Hernández Uribe , Rongke Xu , Youye Zheng , Wen Zhang
{"title":"金红石岩石年代学和钛同位素组成记录了大陆俯冲带熔体-流体-岩石的多次相互作用","authors":"Xiaojia Jiang ,&nbsp;Xin Chen ,&nbsp;Hans-Peter Schertl ,&nbsp;Liam Hoare ,&nbsp;Aitor Cambeses ,&nbsp;David Hernández Uribe ,&nbsp;Rongke Xu ,&nbsp;Youye Zheng ,&nbsp;Wen Zhang","doi":"10.1016/j.gca.2025.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>Subduction zones act as pivotal engines for global element cycling. Titanium (Ti) isotopes, exhibiting mass-dependent fractionation, emerge as a robust geochemical tracer for deciphering complex processes in these dynamic settings. However, the behavior of Ti and its isotopes during metamorphic dehydration and partial melting of deeply subducted continental lithosphere remains poorly constrained. This study addresses this issue through an integrated investigation of age, elemental signatures, and Ti isotopic compositions of rutile from quartz-bearing and granitic felsic veins, eclogites, paragneisses, and orthogneisses within the North Qaidam orogen—a paleo-continental subduction zone where eclogite boudins are embedded in gneissic matrices. Petrochronological U-Pb dating reveals distinct temporal records: rutile in eclogites and gneisses yields metamorphic ages of 439 ± 3 Ma to 430 ± 11 Ma, aligning with regional eclogite-facies metamorphism and implicating rutile growth during dehydration of subducted continental crust. In contrast, rutile from quartz- and felsic veins documents protracted melt/fluid activities spanning 433 ± 3 Ma to 408 ± 1 Ma, reflecting melt/fluid generation under eclogite-facies conditions and subsequent exhumation. High-resolution Ti isotope and trace element analyses demonstrate minimal intra-sample isotopic variability among rutile grains within individual eclogites or gneisses, suggesting negligible Ti isotope fractionation during metamorphic dehydration. Similarly, rutile in eclogite-hosted felsic veins exhibits δ<sup>49</sup>Ti values indistinguishable from their host eclogites or adjacent gneisses, further negating significant isotopic fractionation during partial melting. However, inter-sample δ<sup>49</sup>Ti variations correlate systematically with whole-rock geochemical proxies: negative correlations with εNd(t) and positive correlations with (<sup>87</sup>Sr/<sup>86</sup>Sr)i highlight protolith heterogeneity as the dominant control on Ti isotopic signatures. These findings collectively demonstrate that Ti isotopic compositions in deep subduction-related systems primarily inherit protolith characteristics rather than reflecting process-driven fractionation. Consequently, Ti isotopes serve as powerful tracers for identifying melt/fluid sources in subduction zones. Notably, cold subduction regimes promote localized Ti mobility via eclogite-derived melts/fluids, while warmer settings facilitate widespread Ti activation through partial melting of gneiss-eclogite mixtures, as evidenced by abundant rutile-bearing veins spanning 427–408 Ma. The study underscores that continental subduction zones—spanning thermal gradients from cold to warm—exhibit melt-mediated Ti mobilization influenced by melt abundance, source heterogeneity, and prolonged melt-crystal interaction. These insights from the North Qaidam orogen advance our understanding of Ti cycling in continental subduction systems globally, emphasizing the interplay between protolith inheritance and tectonic thermal regimes in governing element redistribution.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"400 ","pages":"Pages 94-114"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rutile petrochronology and titanium isotope compositions record multiple melt-fluid-rock interactions in a continental subduction zone\",\"authors\":\"Xiaojia Jiang ,&nbsp;Xin Chen ,&nbsp;Hans-Peter Schertl ,&nbsp;Liam Hoare ,&nbsp;Aitor Cambeses ,&nbsp;David Hernández Uribe ,&nbsp;Rongke Xu ,&nbsp;Youye Zheng ,&nbsp;Wen Zhang\",\"doi\":\"10.1016/j.gca.2025.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subduction zones act as pivotal engines for global element cycling. Titanium (Ti) isotopes, exhibiting mass-dependent fractionation, emerge as a robust geochemical tracer for deciphering complex processes in these dynamic settings. However, the behavior of Ti and its isotopes during metamorphic dehydration and partial melting of deeply subducted continental lithosphere remains poorly constrained. This study addresses this issue through an integrated investigation of age, elemental signatures, and Ti isotopic compositions of rutile from quartz-bearing and granitic felsic veins, eclogites, paragneisses, and orthogneisses within the North Qaidam orogen—a paleo-continental subduction zone where eclogite boudins are embedded in gneissic matrices. Petrochronological U-Pb dating reveals distinct temporal records: rutile in eclogites and gneisses yields metamorphic ages of 439 ± 3 Ma to 430 ± 11 Ma, aligning with regional eclogite-facies metamorphism and implicating rutile growth during dehydration of subducted continental crust. In contrast, rutile from quartz- and felsic veins documents protracted melt/fluid activities spanning 433 ± 3 Ma to 408 ± 1 Ma, reflecting melt/fluid generation under eclogite-facies conditions and subsequent exhumation. High-resolution Ti isotope and trace element analyses demonstrate minimal intra-sample isotopic variability among rutile grains within individual eclogites or gneisses, suggesting negligible Ti isotope fractionation during metamorphic dehydration. Similarly, rutile in eclogite-hosted felsic veins exhibits δ<sup>49</sup>Ti values indistinguishable from their host eclogites or adjacent gneisses, further negating significant isotopic fractionation during partial melting. However, inter-sample δ<sup>49</sup>Ti variations correlate systematically with whole-rock geochemical proxies: negative correlations with εNd(t) and positive correlations with (<sup>87</sup>Sr/<sup>86</sup>Sr)i highlight protolith heterogeneity as the dominant control on Ti isotopic signatures. These findings collectively demonstrate that Ti isotopic compositions in deep subduction-related systems primarily inherit protolith characteristics rather than reflecting process-driven fractionation. Consequently, Ti isotopes serve as powerful tracers for identifying melt/fluid sources in subduction zones. Notably, cold subduction regimes promote localized Ti mobility via eclogite-derived melts/fluids, while warmer settings facilitate widespread Ti activation through partial melting of gneiss-eclogite mixtures, as evidenced by abundant rutile-bearing veins spanning 427–408 Ma. The study underscores that continental subduction zones—spanning thermal gradients from cold to warm—exhibit melt-mediated Ti mobilization influenced by melt abundance, source heterogeneity, and prolonged melt-crystal interaction. These insights from the North Qaidam orogen advance our understanding of Ti cycling in continental subduction systems globally, emphasizing the interplay between protolith inheritance and tectonic thermal regimes in governing element redistribution.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"400 \",\"pages\":\"Pages 94-114\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725002674\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725002674","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

俯冲带是全球元素循环的关键引擎。钛(Ti)同位素表现出质量依赖的分馏,作为一种强大的地球化学示踪剂,可以在这些动态环境中破译复杂的过程。然而,在深俯冲大陆岩石圈变质脱水和部分熔融过程中,Ti及其同位素的行为仍未得到很好的研究。本研究通过对柴达木北缘造山带(榴辉岩包埋于片麻质基底中的古大陆俯冲带)含石英和花岗质长英岩脉、榴辉岩、副辉岩和正长岩中金红石的年龄、元素特征和钛同位素组成进行综合研究,解决了这一问题。岩石年代学U-Pb测年揭示了不同的时间记录:榴辉岩和片麻岩中金红石的变质年龄为439±3 Ma至430±11 Ma,与区域榴辉岩相变质作用一致,暗示了俯冲大陆地壳脱水过程中金红石的生长。相比之下,石英和长英质矿脉中的金红石则记录了433±3 Ma至408±1 Ma的漫长熔融/流体活动,反映了榴辉岩相条件下的熔融/流体生成以及随后的挖掘。高分辨率的钛同位素和微量元素分析表明,在单个榴辉岩或片岩中,金红石颗粒的样品内同位素变化很小,表明变质脱水过程中钛同位素分馏可以忽略不计。同样,含榴辉岩的长英质矿脉中的金红石,其δ49Ti值与其宿主榴辉岩或邻近的片麻岩难以区分,进一步否定了部分熔融过程中显著的同位素分馏作用。样品间δ49Ti变化与全岩地球化学指标有系统的相关性,与εNd(t)呈负相关,与(87Sr/86Sr)呈正相关,表明原岩非均质性是控制Ti同位素特征的主要因素。这些发现共同表明,在深俯冲相关系统中,钛同位素组成主要继承了原岩特征,而不是反映了过程驱动的分馏作用。因此,钛同位素可作为识别俯冲带熔体/流体来源的有力示踪剂。值得注意的是,冷俯冲机制通过榴辉岩衍生的熔体/流体促进了局部钛的流动性,而温暖的环境通过片麻岩-榴辉岩混合物的部分熔融促进了广泛的钛活化,这一点可以从427-408 Ma的富含金红石的矿脉中得到证明。该研究强调,大陆俯冲带——跨越从冷到暖的热梯度——表现出熔体介导的钛动员,受熔体丰度、源非均质性和长时间的熔体-晶体相互作用的影响。柴达木北缘造山带的这些发现促进了我们对全球大陆俯冲系统中钛循环的认识,强调了原岩继承和构造热机制在控制元素再分配中的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rutile petrochronology and titanium isotope compositions record multiple melt-fluid-rock interactions in a continental subduction zone
Subduction zones act as pivotal engines for global element cycling. Titanium (Ti) isotopes, exhibiting mass-dependent fractionation, emerge as a robust geochemical tracer for deciphering complex processes in these dynamic settings. However, the behavior of Ti and its isotopes during metamorphic dehydration and partial melting of deeply subducted continental lithosphere remains poorly constrained. This study addresses this issue through an integrated investigation of age, elemental signatures, and Ti isotopic compositions of rutile from quartz-bearing and granitic felsic veins, eclogites, paragneisses, and orthogneisses within the North Qaidam orogen—a paleo-continental subduction zone where eclogite boudins are embedded in gneissic matrices. Petrochronological U-Pb dating reveals distinct temporal records: rutile in eclogites and gneisses yields metamorphic ages of 439 ± 3 Ma to 430 ± 11 Ma, aligning with regional eclogite-facies metamorphism and implicating rutile growth during dehydration of subducted continental crust. In contrast, rutile from quartz- and felsic veins documents protracted melt/fluid activities spanning 433 ± 3 Ma to 408 ± 1 Ma, reflecting melt/fluid generation under eclogite-facies conditions and subsequent exhumation. High-resolution Ti isotope and trace element analyses demonstrate minimal intra-sample isotopic variability among rutile grains within individual eclogites or gneisses, suggesting negligible Ti isotope fractionation during metamorphic dehydration. Similarly, rutile in eclogite-hosted felsic veins exhibits δ49Ti values indistinguishable from their host eclogites or adjacent gneisses, further negating significant isotopic fractionation during partial melting. However, inter-sample δ49Ti variations correlate systematically with whole-rock geochemical proxies: negative correlations with εNd(t) and positive correlations with (87Sr/86Sr)i highlight protolith heterogeneity as the dominant control on Ti isotopic signatures. These findings collectively demonstrate that Ti isotopic compositions in deep subduction-related systems primarily inherit protolith characteristics rather than reflecting process-driven fractionation. Consequently, Ti isotopes serve as powerful tracers for identifying melt/fluid sources in subduction zones. Notably, cold subduction regimes promote localized Ti mobility via eclogite-derived melts/fluids, while warmer settings facilitate widespread Ti activation through partial melting of gneiss-eclogite mixtures, as evidenced by abundant rutile-bearing veins spanning 427–408 Ma. The study underscores that continental subduction zones—spanning thermal gradients from cold to warm—exhibit melt-mediated Ti mobilization influenced by melt abundance, source heterogeneity, and prolonged melt-crystal interaction. These insights from the North Qaidam orogen advance our understanding of Ti cycling in continental subduction systems globally, emphasizing the interplay between protolith inheritance and tectonic thermal regimes in governing element redistribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信